
Pervasive PSQL v11

Pervasive PSQL Programmer’s Guide

Pervasive Software Inc.
12365 Riata Trace Parkway

Building B
Austin, TX 78727 USA

Telephone: 512 231 6000 or 800 287 4383
Fax: 512 231 6010

Email: database@pervasive.com
Web: http://www.pervasivedb.com

d i s c l a i m e r PERVASIVE SOFTWARE INC. LICENSES THE SOFTWARE AND
DOCUMENTATION PRODUCT TO YOU OR YOUR COMPANY SOLELY ON AN “AS
IS” BASIS AND SOLELY IN ACCORDANCE WITH THE TERMS AND CONDITIONS
OF THE ACCOMPANYING LICENSE AGREEMENT. PERVASIVE SOFTWARE INC.
MAKES NO OTHER WARRANTIES WHATSOEVER, EITHER EXPRESS OR IMPLIED,
REGARDING THE SOFTWARE OR THE CONTENT OF THE DOCUMENTATION;
PERVASIVE SOFTWARE INC. HEREBY EXPRESSLY STATES AND YOU OR YOUR
COMPANY ACKNOWLEDGES THAT PERVASIVE SOFTWARE INC. DOES NOT
MAKE ANY WARRANTIES, INCLUDING, FOR EXAMPLE, WITH RESPECT TO
MERCHANTABILITY, TITLE, OR FITNESS FOR ANY PARTICULAR PURPOSE OR
ARISING FROM COURSE OF DEALING OR USAGE OF TRADE, AMONG OTHERS.

t r a d e m a r k s Btrieve, Client/Server in a Box, Pervasive, Pervasive Software, and the Pervasive Software
logo are registered trademarks of Pervasive Software Inc.
Built on Pervasive Software, DataExchange, MicroKernel Database Engine, MicroKernel Database
Architecture, Pervasive.SQL, Pervasive PSQL, Solution Network, Ultralight, and ZDBA are
trademarks of Pervasive Software Inc.

Microsoft, MS-DOS, Windows, Windows 95, Windows 98, Windows NT, Windows Millennium,
Windows 2000, Windows 2003, Windows 2008, Windows 7, Windows 8, Windows Server 2003,
Windows Server 2008, Windows Server 2012, Windows XP, Win32, Win32s, and Visual Basic are
registered trademarks of Microsoft Corporation.

NetWare and Novell are registered trademarks of Novell, Inc.

NetWare Loadable Module, NLM, Novell DOS, Transaction Tracking System, and TTS are
trademarks of Novell, Inc.

Sun, Sun Microsystems, Java, all trademarks and logos that contain Sun, Solaris, or Java, are
trademarks or registered trademarks of Sun Microsystems.

All other company and product names are the trademarks or registered trademarks of their
respective companies.

© Copyright 2013 Pervasive Software Inc. All rights reserved. Reproduction, photocopying, or
transmittal of this publication, or portions of this publication, is prohibited without the express prior
written consent of the publisher.

This product includes software developed by Powerdog Industries. © Copyright 1994 Powerdog
Industries. All rights reserved.

This product includes software developed by KeyWorks Software. © Copyright 2002 KeyWorks
Software. All rights reserved.

This product includes software developed by DUNDAS SOFTWARE. © Copyright 1997-2000
DUNDAS SOFTWARE LTD., all rights reserved.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

This product uses the free unixODBC Driver Manager as written by Peter Harvey
(pharvey@codebydesign.com), modified and extended by Nick Gorham (nick@easysoft.com), with
local modifications from Pervasive Software. Pervasive Software will donate their code changes to the
current maintainer of the unixODBC Driver Manager project, in accordance with the LGPL license
agreement of this project. The unixODBC Driver Danager home page is located at
www.unixodbc.org. For further information on this project, contact its current maintainer: Nick
Gorham (nick@easysoft.com).

A copy of the GNU Lesser General Public License (LGPL) is included on the distribution media for
this product. You may also view the LGPL at www.fsf.org/licensing/licenses/lgpl.html.

Pervasive PSQL Programmer’s Guide
January 2013

Contents
About This Manual . xv

Where to Get Information . xvi
Who Should Read This Manual . xvii
Manual Organization . xviii

Database Access Methods . xviii
Transactional Programming with the Transactional Interface xviii
Relational Programming . xix
Appendixes . xx

Typographical Conventions . xxi

1 Overview of Pervasive Access Methods 1
Overview of Pervasive Access Methods . 2
SQL Access in Pervasive PSQL . 3

2 Developer Quick Start . 5
Choosing An Access Method. . 6
Database Connection Quick Reference . 9

ADO.NET Connections . 9
ADO/OLE DB Connections . 9
JDBC Connections . 10
Java Class Library . 10
DSN-Less Connections . 10

ODBC Information . 12
Other SQL Access Methods . 12

Additional Resources for Application Developers . 13
Conceptual Information. . 13
Reference Information. . 13
Online Developer Resources . 13
Sample Code . 13

3 Developing Applications for the Transactional Interface 15
Transactional Interface Environment . 16

Documentation. . 16
Configuration Issues for Transactional Interface. . 17

4 Transactional Interface Fundamentals 19
Overview of the Transactional Interface . 20

Transactional Interface Environment . 22
Pages . 24

Page Types . 24
iii

Contents
Page Size . 25
File Types . 28

Standard Data Files . 28
Data-Only Files . 28
Key-Only Files . 29
Large Files . 29
Long File Names. 30

Data Types . 31
Key Attributes . 32

Key Attributes Description . 32
Key Specification . 50

Database URIs . 54
Syntax . 54
Parameter Precedence. 55
Special Characters . 56
Remarks . 57
Examples . 58
IPv6. 59

Double-Byte Character Support . 60
Record Length . 61
Data Integrity . 63

Record Locks . 63
Transactions . 63
Transaction Durability . 65
System Data . 66
Shadow Paging . 68
Backing Up Your Files . 69

Event Logging . 70
Performance Enhancement . 71

System Transactions . 71
Memory Management . 74
Page Preallocation. 75
Extended Operations . 75

Disk Usage . 77
Free Space List . 77
Index Balancing . 77
Data Compression. 78
Blank Truncation . 79

5 Designing a Database . 81
Understanding Data Files . 82
Creating a Data File . 85

Data Layout . 85
Creating File and Key Specification Structures . 91
Creating a File with Page Level Compression . 94
iv

Contents
Calling the Create Operation . 95
Create Index Operation . 96

Calculating the Logical Record Length . 98
Choosing a Page Size . 100
Estimating File Size . 108

Formula and Derivative Steps . 108
Optimizing Your Database . 113

Duplicatable Keys . 113
Page Preallocation . 115
Blank Truncation. . 117
Record Compression. . 118
Index Balancing . 119
Variable-tail Allocation Tables . 120
Key-Only Files . 122

Setting Up Security . 123
Owner Names . 123
Exclusive Mode. . 124
SQL Security . 124

6 Language Interfaces Modules . 125
Interface Modules Overview . 126
C/C++ . 129

Interface Modules . 129
Programming Requirements . 130

COBOL . 131
Delphi . 132
DOS (Btrieve) . 133

Interface Modules . 133
Pascal . 135
Visual Basic . 137

7 Interface Libraries . 141
Overview of Interface Libraries . 142

Linux . 142
Distributing Pervasive PSQL Applications . 143

Distribution Rules for Pervasive PSQL . 143
Registering Pervasive PSQL ActiveX Files . 143
Installing Pervasive PSQL with your Application 144

8 Working with Records . 145
Sequence of Operations . 146
Accessing Records . 148

Accessing Records by Physical Location . 148
Accessing Records by Key Value . 149
Reading Variable-Length Records . 151
v

Contents
Accessing Records by Chunks . 153
Inserting and Updating Records . 156

Ensuring Reliability in Mission-Critical Inserts and Updates 156
Inserting Non-Duplicatable Keys . 157
Inserting and Updating Variable-Length Records 157
Reading and Updating Fixed-length Portions . 159
Updating Non-Modifiable Keys . 159
No-Currency-Change (NCC) Operations. 159

Multi-Record Operations . 161
Terminology . 161
Background . 162
Validation . 163
Optimization . 163
Performance Tips . 168

Adding and Dropping Keys . 171

9 Supporting Multiple Clients . 173
Btrieve Clients . 174
Passive Concurrency . 179
Record Locking . 181
User Transactions . 182

Locks . 183
Record Locks in Concurrent Transactions . 186
Implicit Locks . 190
File Locks. 191

Examples of Multiple Concurrency Control . 194
Example 1 . 194
Example 2 . 198

Concurrency Control for Multiple Position Blocks . 200
Multiple Position Blocks . 201
ClientID Parameter . 202

10 Debugging Your Btrieve Application 203
Trace Files . 204
Indirect Chunk Operations in Client/Server Environments 209
Engine Shutdowns and Connection Resets . 210
Reducing Wasted Space in Files . 211

11 Btrieve API Programming . 213
Fundamentals of Btrieve API Programming . 214

Btrieve API Flow Chart . 214
Visual Basic Notes . 215
Delphi Notes . 216
Starting a Pervasive PSQL Application . 217

Adding Pervasive PSQL Source Modules . 217
vi

Contents
Btrieve API Code Samples . 218
Creating a File . 218
Inserting Records. . 226
Updating Records . 231
Performing Step Operations . 234
Performing Get Operations . 237
Chunking, BLOBs, and Variable-Length Records 242
Working with Segmented Indexes . 246

Declarations of Btrieve API Functions for Visual Basic 250

12 Creating a Database . 251
Named Databases . 252
Bound Databases . 253
Creating Database Components . 255
Naming Conventions . 256

Unique Names . 256
Valid Characters . 256
Maximum Name Lengths . 257
Case Sensitivity . 257

Creating a Data Dictionary . 258
Creating Tables . 260

Aliases . 260
Creating Columns . 262
Creating Indexes . 263

Index Segments. . 264
Index Attributes . 265

13 Relational Database Design . 269
Overview of Database Design . 270
Stages of Design . 271

Conceptual Design . 271
Logical Design . 271
Physical Design . 275

14 Inserting and Deleting Data . 277
Overview of Inserting and Deleting Data . 278
Inserting Values . 279
Transaction Processing . 280
Deleting Data . 281
Dropping Indexes . 282
Dropping Columns . 283
Dropping Tables . 284
Dropping an Entire Database . 285
vii

Contents
15 Modifying Data . 287
Overview of Modifying Data . 288
Modifying Tables . 289
Setting Default Values . 290
Using UPDATE . 291

16 Retrieving Data . 293
Overview of Retrieving Data . 294
Views . 295

Features of Views . 295
Temporary and Stored Views . 295
Read-Only Tables in Views . 297
Mergeable Views . 298

Selection Lists . 300
Sorted and Grouped Rows . 302
Joins . 303

Joining Tables with Other Tables . 304
Joining Views with Tables . 305
Types of Joins . 305

Subqueries . 308
Subquery Limitations . 308
Correlated Subqueries . 308

Restriction Clauses . 310
Restriction Clause Operators . 310
Restriction Clause Examples . 312

Functions . 314
Aggregate Functions . 314
Arguments to Aggregate Functions . 314
Aggregate Function Rules. 315
Scalar Functions . 316

17 Storing Logic . 319
Stored Procedures . 320

Stored Procedure and Positioned Update . 320
Declaring Stored Procedures . 321
Invoking Stored Procedures . 321
Deleting Stored Procedures. 322

SQL Variable Statements . 323
Procedure-Owned Variables . 323
Assignment Statement . 323

SQL Control Statements . 324
Compound Statement . 324
IF Statement . 325
LEAVE Statement . 325
LOOP Statement . 325
viii

Contents
WHILE Statement . 326
SQL Triggers. . 327

Timing and Ordering of Triggers . 327
Defining the Trigger Action . 329

18 Managing Data . 331
Overview of Managing Data . 332
Defining Relationships Among Tables . 333

Referential Integrity Definitions . 333
Keys . 336

Primary Keys . 336
Foreign Keys . 338

Referential Constraints . 341
Referential Integrity Rules . 342

Referential Integrity in the Sample Database . 346
Creating the Course Table . 346
Adding a Primary Key to Course . 346
Creating the Student Table with Referential Constraints 346

Administering Database Security . 347
Understanding Database Rights. . 347
Establishing Database Security . 348
Enabling Security. . 349
Creating User Groups and Users . 350
Granting Rights . 351
Dropping Users and User Groups . 352
Revoking Rights . 353
Disabling Security . 353
Retrieving Information about Database Security 353

Concurrency Controls . 354
Transaction Processing . 354
Starting and Ending Transactions . 355
Using Savepoints to Nest Transactions . 355
Special Considerations. . 358
Isolation Levels . 358
Explicit Locks. . 363
Passive Control . 364

Atomicity in Pervasive PSQL Databases . 366
Transaction Control in Procedures . 366

A Sample Collations Using International Sorting Rules 369
German Sample Collations. . 370

Unsorted Data . 370
Sorted Data . 372

Spanish Sample Collations . 373
Unsorted Data . 373
ix

Contents
Sorted Data . 374
French Sample Collations . 376

Unsorted Data . 376
Sorted Data . 377

B Sample Database Tables and Referential Integrity 379
Overview of the Demodata Sample Database . 380
Structure of the Demodata Sample Database . 381

Assumptions . 381
Entity Relationships . 382

Referential Integrity in the Demodata Sample Database 383
Table Design of the Demodata Sample Database . 385

BILLING Table . 385
CLASS Table . 386
COURSE Table . 386
DEPT Table . 386
ENROLLS Table . 387
FACULTY Table. 387
PERSON Table . 387
ROOM Table . 388
STUDENT Table . 389
TUITION Table . 389
x

xi

Figures

1 Example Restriction Clause . 310

2 Multiple Paths Anomaly . 345

3 Entity Relationships . 382

4 RI Structure in the Sample Database . 383

Tables

1 A Comparison of Application Programming Access Methods 7

2 System Error Codes . 46

3 User-Defined Alternate Collating Sequence Format. 48

4 ISR Table Names . 50

5 Key Specification Structure . 51

6 Key Attributes. . 52

7 Maximum Number of Index Segments per Page . 53

8 Elements of a Database URI . 54

9 Special Characters in a Database URI. . 56

10 URI Examples with Escape Sequences . 57

11 Examples of the transactional interface URIs . 58

12 Maximum Record Size in Bytes for Fixed-length Records 61

13 Key Attributes. . 86

14 File Attributes. . 88

15 Sample Data Buffer for File and Key Specifications . 91

16 Maximum Logical Record Length by File Format . 98

17 Record Overhead in Bytes Without Record Compression 100

18 Record Overhead in Bytes With Record Compression 101

19 Page Overhead in Bytes . 102

20 Physical Record Length Worksheet . 102

21 Physical Record Length Example: 194 Bytes . 104

22 Example of Pre-8.x File Versions: Record Length 14 Bytes 105

23 Minimum Page Size Worksheet . 106

24 Minimum Page Size Worksheet . 107

25 Page Sizes of Special Pages by File Format . 111

26 Disk Space Allocation based on Page Size . 116

27 Btrieve Language Interface Source Modules . 126

28 Common Data Types Used in the Btrieve Data Buffer 128

29 Btrieve API Operating System Switches . 130

30 Btrieve API Operating System Switches for DOS Applications 134

31 Transactional Interface Programming Libraries . 142

32 Redistributable Files . 143

33 Actual Direction of Extended Operation . 164

34 Sample Data for Multi-record Operations . 165
xii

Tables
35 Possible File Operation Conflicts Involving Local Clients 177

36 Passive Concurrency (Non-transactional Example) 179

37 Passive Concurrency (Concurrent Transaction Example) 180

38 Example without Implicit Locks . 189

39 Interaction Among Record Locks, Page Locks, and Concurrency. 194

40 Interaction with File Locks and Passive Concurrency 198

41 Pervasive PSQL System Tables . 258

42 Maximum Number of Index Segments per Data File 264

43 Boolean Operators . 311

44 Relational Condition Operators . 311

45 Range Condition Operators . 312

46 Aggregate Functions . 314

47 Database Rights . 347

48 Tables and Columns Involved with RI. 383
xiii

xiv

About This Manual
The Pervasive PSQL Software Development Kit (SDK) enables
developers to create applications using either the transactional
interface, the relational interface, or a combination of the two. This
book explains the fundamentals about how to develop applications
that use Pervasive’s interfaces.
xv

Where to Get Information

The SDK user documentation can be installed with the database
engine. It contains this book as well as the other reference books for
the SDK.

The viewer for the documentation library is integrated into Pervasive
PSQL Control Center (PCC). Access the documentation through the
PCC interface on the Welcome view, in the Help menu, by pressing
F1 (Windows) or Shift F1 (Linux).

The transactional interface is designed for high-performance data
handling and improved programming productivity. With ODBC,
you can obtain relational access to the Pervasive relational interface.

To find Look here

Information contained in this
book

Manual Organization

Programming with ADO and
OLE DB

See Data Provider for .NET Guide

Using the Distributed Tuning
Interface

See Distributed Tuning Interface Guide

API reference documentation See Btrieve API Guide

Reference for ActiveX
controls, OLE DB and ADO,
Distributed Tuning Objects,
and Pervasive Direct Access
Components for Delphi and
C++ Builder

See ActiveX Control's Guide, OLE DB Provider
Guide, Distributed Tuning Objects Guide, and
Pervasive Direct Access Components Guide

Installing and running
Pervasive PSQL

See Getting Started With Pervasive PSQL

Programming with Java See JDBC Driver Guide and Java Class Library
Guide

Performing administrative
tasks with Pervasive PSQL

See Pervasive PSQL User's Guide

Pervasive PSQL error codes See Status Codes and Messages

Other information Use the Index to find information on a particular
subject.
xvi

Who Should Read This Manual

This manual provides procedural information for developers who
want to learn how to develop Pervasive applications using a variety
of database access methods and APIs. This manual also overviews
Pervasive PSQL database design and concepts at the transactional
and relational levels.

Pervasive Software Inc. would appreciate your comments and
suggestions about this manual. As a user of our documentation, you
are in a unique position to provide ideas that can have a direct
impact on future releases of this and other manuals. If you have
comments or suggestions for the product documentation, post your
request at the Community Forum on the Pervasive Software Web
site.
xvii

Manual Organization

This manual contains the following topics:

Database
Access
Methods

Chapter 1—Overview of Pervasive Access Methods

This chapter introduces the various visual components and APIs
with which you can develop Pervasive PSQL applications.

Chapter 2—Developer Quick Start

This chapter shows more detail regarding the access methods.

Transactional
Programming
with the
Transactional
Interface

Chapter 3—Developing Applications for the Transactional
Interface

This chapter provides information about developing and
running applications in the transactional interface environment.

Chapter 4—Transactional Interface Fundamentals

This chapter describes API and transactional interface features.

Chapter 5—Designing a Database

This chapter provides information about creating a data file,
improving system performance, and setting up security.

Chapter 6—Language Interfaces Modules

This chapter provides language interface source modules
provided in the Pervasive PSQL SDK installation option.

Chapter 7—Interface Libraries

This chapter includes an overview of Pervasive interface libraries
and the requirements for shipping Glue DLL files.

Chapter 8—Working with Records

This chapter provides information about inserting and updating
records, establishing position in a record, and adding and
dropping keys.

Chapter 9—Supporting Multiple Clients

This chapter describes the fundamental concepts of supporting
multiple users and applications.

Chapter 10—Debugging Your Btrieve Application
xviii

This chapter provides tips on troubleshooting your application.

Chapter 11—Btrieve API Programming

This chapter provides information to help you begin developing
a Pervasive PSQL application by making direct calls to the
Btrieve API.

Relational
Programming

Chapter 12—Creating a Database

This chapter explains how to create a database by creating the
data dictionary and creating the database’s tables, columns, and
indexes.

Chapter 13—Relational Database Design

This chapter introduces the fundamental principles of relational
database design. A thorough database design throughout the
development process is critical to successful database
functionality and performance.

Chapter 14—Inserting and Deleting Data

This chapter explains how to add data to a database using either
Pervasive PSQL applications or SQL statements. It also explains
how to drop (delete) rows, indexes, columns, or tables from your
database or drop an entire database when you no longer need it.

Chapter 15—Modifying Data

This chapter explains how to modify table definitions, column
attributes, and data. You can perform these tasks by entering
SQL statements using an interactive application.

Chapter 16—Retrieving Data

This chapter discusses how you can use SELECT statements to
retrieve data.

Chapter 17—Storing Logic

This chapter explains how to store SQL procedures for future use
and how to create SQL triggers.

Chapter 18—Managing Data

This chapter discusses defining relationships among tables,
administering database security, and controlling concurrency
with transactions. This chapter also discusses atomicity in
Pervasive PSQL databases.
xix

Appendixes Appendix A—Sample Collations Using International Sorting
Rules

This appendix lists sample collations of language-specific
strings, using the ISR tables provided in the transactional
interface.

Appendix B—Sample Database Tables and Referential Integrity

This appendix describes the design of the tables in a university
sample database.

This manual also includes an index.
xx

Typographical Conventions

The documentation uses the following typographical conventions.

Convention Explanation

bold Bold typeface usually indicates elements of a graphical user interface, such as menu names,
dialog box names, commands, options, buttons, and so forth. Bold typeface is also applied
occasionally in a standard typographical use for emphasis.

italics Italics indicate a variable that must be replaced with an appropriate value. For example,
user_name would be replaced with an actual user name. Italics is also applied occasionally
in a standard typographical use for emphasis, such as for a book title.

cAsE Uppercase text is used typically to improve readability of code syntax, such as SQL syntax,
or examples of code. Case is significant for some operating systems. For such instances, the
subject content mentions whether literal text must be uppercase or lowercase.

monospace Monospace text is used typically to improve readability of syntax examples and code
examples, to indicate results returned from code execution, or for text displayed on a
command line. The text may appear uppercase or lowercase, depending on context.

', ", and “ ” Straight quotes, both single and double, are used in code and syntax examples to indicate
when a single or double quote is required. Curly double quotes are applied in the standard
typographical use for quotation marks.

| The vertical rule indicates an OR separator to delineate items for which you must choose one
item or another. See explanation for angle brackets below.

[] Square brackets indicate optional items. Code syntax not enclosed by brackets is required
syntax.

< > Angle brackets indicate that you must select one item within the brackets. For example, <yes
| no> means you must specify either “yes” or “no.”

. . . Ellipsis indicates that the preceding item can be repeated any number of times in succession.
For example, [parameter . . .] indicates that parameter can be repeated. Ellipsis following
brackets indicate the entire bracketed content can be repeated.

::= The symbol ::= means one item is defined in terms of another. For example, a::=b means that
item “a” is defined in terms of “b.”

%string% A variable defined by the Windows operating system. String represents the variable text. The
percent signs are literal text.

$string An environment variable defined by the Linux operating system. String represents the variable
text. The dollar sign is literal text.
xxi

xxii

c h a p t e r
1
Overview of Pervasive Access
Methods
This chapter introduces you to the Pervasive programming. The
chapter contains the following topics:

Overview of Pervasive Access Methods

SQL Access in Pervasive PSQL
1

Overview of Pervasive Access Methods
Overview of Pervasive Access Methods
The following is a summary of Pervasive access methods and APIs.

Access Method Description Used For

Btrieve (transactional
interface)

Original Btrieve API Creating Btrieve
database applications

ADO (Microsoft IDEs) High-level visual or code-
based programming

Visual programming of
transactional or relational
(SQL) applications. This
is the recommended
programming interface
for Microsoft
development
environments.

PDAC (Embarcadero
IDEs)

Pervasive Direct Access
Components for Delphi
and C++ Builder

Replaces functionality of
Embarcadero data-aware
components and
eliminates need for
Embarcadero Database
Engine.

ODBC (relational) Microsoft’s Open
Database Connectivity

Creating SQL-based
applications

Java Class Library Java Class Library for
transactional interface
data access.

Creating Java-based
applications that connect
to the transactional
interface

JDBC Implementation of Sun’s
Java Database
Connectivity

Creating JDBC-based
SQL applications using
an industry-standard API.

Distributed Tuning
Interface (DTI)

Pervasive’s API for
monitoring and
administration

Performing
administrative and utility
functions from
applications, creating and
maintaining Data
Dictionary Files from
applications

Distributed Tuning
Objects (DTO)

Pervasive’s object-
oriented programming
interface for monitoring
and administration

Performing
administrative and utility
functions from
applications, creating and
maintaining Data
Dictionary Files from
applications
2

SQL Access in Pervasive PSQL
SQL Access in Pervasive PSQL
ODBC is the data access method for SQL databases. This brings
several advantages including the following:

Improved performance

Standards-based API

Central to Pervasive’s replication product

You do not have to learn the ODBC API in order to develop Pervasive
PSQL applications. There are additional interfaces such as OLE DB
or JDBC that can simplify development.
3

Overview of Pervasive Access Methods
4

c h a p t e r
2
Developer Quick Start
The Pervasive PSQL Software Development Kit (SDK) offers you the
best of both worlds for database solutions: the transactional interface
offers high speed data transactions, and the relational interface
provides full featured relational data access to the same data with
greater performance in reporting and decision support.

This chapter provides quick tips to help you begin building
applications with Pervasive PSQL, which are described in the
following sections:

Choosing An Access Method

Database Connection Quick Reference

Additional Resources for Application Developers
5

Developer Quick Start
Choosing An Access Method
Many factors affect development strategy choices. Availability of
tools on different platforms, the developer's familiarity with a given
programming environment, and portability requirements often play
decisive roles in the process. On the other hand, when the developer
has more flexibility, various subtle factors should be considered.

Performance is always a consideration. Run-time performance,
however, must be balanced against development time: is it more
important to deliver the program quickly, or to have it run quickly in
use?

In the context of database programming, the database interface
affects both development time and run-time performance. Often the
choice between SQL and Btrieve is based on these factors alone.

If you are new to Pervasive PSQL products, you may want to use
access methods such as ADO.NET/OLE DB, ActiveX controls, JDBC,
Pervasive Direct Access Components for Delphi and C++ Builder, or
other third-party development tools to develop Pervasive PSQL
applications.

If you want to directly write to the Btrieve API, refer to Btrieve API
Programming. This chapter provides tips and code samples in
several programming languages.

Table 1 compares the various Pervasive PSQL access methods:
6

Choosing An Access Method
Table 1 A Comparison of Application Programming Access Methods

Access Method Characteristics Suitable For

Btrieve API • DLL can be called by (almost) any
Windows programming language.

• Exposes the complete feature set of the
database.

• Minimum size.
• Greatest flexibility.
• Shortest code path between application

and data.
• Least code overhead in the relational

database management system (but
more application code must be devoted
to database management issues).

• Client/Server capability.
• BLOB support.

• Applications where size or
run-time performance is the
primary consideration.

Java • Thin client.
• Cross-platform portability.
• Internet/Intranet capability.
• Supports Winsock and JNI protocols.
• Machine and OS independence.

Internet and Web capability.
• Minimum size.
• Good flexibility.
• Rowset, field abstractions implemented

in the interface.
• Fair overall performance (Java is an

interpreted language which carries a
heavy code overhead).

• Client-server features, version control
inherent in the language

• Web applets.
• Internet-based applications.
• Applications which must run

on various hardware and OS
platforms.

ADO/OLE DB • Good integration with Visual Studio
• Can work in either a transactional or

relational context
• Internet/Intranet capability
• Rowset, field abstractions

• Applications development
using Visual Studio.

ADO.NET • Good overall performance.
• Internet capability.
• XML Support
• Efficient scalable architecture

• Applications running in a
managed environment where
runtime is paramount.
7

Developer Quick Start
ActiveX • Visual Basic native interface.
• Supported in most Windows

programming environments.
• Good flexibility.
• Good overall performance.
• Internet capability.
• Rowset, field abstractions.
• Extended operations, table join

features.
• Client-server features.

• Applications where a balance
of runtime performance and
ease of coding is important.

• Applications that do not
require the minimum
download footprint or the
machine independence of
Java, but may require Internet
access to data.

SQL/ODBC • Abstracts the application interface from
the database implementation.

• Most programming languages, many
applications support it.

• Relational access only.
• Large. Generally slower than direct

interface to the native DBMS API.
Provides a “generic” interface to an
application.

• Full relational implementation.
• Subset of native functionality.
• Standard interface supported by nearly

all Windows programming
environments and many off-the-shelf
applications.

• Applications that require
heterogeneous access to
different data stores, or which
must be independent of any
particular data store, should
consider ODBC.

• Applications where
maintaining a relational data
store is the primary
consideration, but run-time
performance is still important.

Pervasive Direct
Access
Components

• Replaces Embarcadero Database
Engine in Delphi and C++ Builder

• Classes to access data from either a
transactional or relational context.

• Application development
using Embarcadero IDEs.

Table 1 A Comparison of Application Programming Access Methods

Access Method Characteristics Suitable For
8

Database Connection Quick Reference
Database Connection Quick Reference
This section provides links to quick information on how to get
connected to a Pervasive PSQL database.

These examples should only supplement the full documentation for
each access method. For each access method, there are links to more
detailed information.

Each sample references the Course table in the DEMODATA sample
database, which is included with Pervasive PSQL.

ADO.NET Connections

ADO/OLE DB Connections

JDBC Connections

Java Class Library

DSN-Less Connections

ADO.NET
Connections

For complete information on ADO.NET tasks, see

Using the Data Providersin Data Provider for .NET Guide

The code examples provided when you install the sample
headers and files (the Web download of the ADO.NET samples
and header files).

Sample ADO.NET DB Connection Code
"ServerDSN=Demodata;UID=test;PWD=test;ServerName=localh

ost;";

ADO/OLE DB
Connections

For complete information on ADO/OLE DB tasks, see

OLE DB Provider Introduction

Programming with the Pervasive OLE DB Provider

Sample ADO/OLE DB Connection Code
Dim rs As New ADODB.Recordset
rs.Open "Course", "Provider=PervasiveOLEDB;Data

Source=DEMODATA", adOpenDynamic,
adLockOptimistic, adCmdTableDirect

’ work with data
9

Developer Quick Start
rs.Close

JDBC
Connections

For complete information on JDBC tasks, see

Introduction to the Pervasive JDBC Driver

Programming with the Pervasive JDBC 2 Driver

Sample JDBC Connection Code
Class.forName("com.pervasive.jdbc.v2.Driver");
 Connection con =

DriverManager.getConnection("jdbc:pervasive://
localhost:1583/DEMODATA");

 PreparedStatement stmt = con.prepareStatement("SELECT *
FROM Course ORDER BY Name");

 ResultSet rs = stmt.executeQuery();

Java Class
Library

For complete information on Java Class Library tasks, see

Introduction to the Pervasive Java Interface

Programming with the Java Class Library

Sample JCL Connection String
Session session = Driver.establishSession();
Database db = session.connectToDatabase();
db.setDictionaryLoc("c:\\PVSW\\DEMODATA");

DSN-Less
Connections

Pervasive PSQL allows an application to perform a DSN-less
connection (connecting to the SQL engine without using a DSN) :

The following steps should be used when running locally on the
Server or from a Remote Client. This method works with Server as
well as Workstation/WorkGroup Engines.

1 SQLAllocEnv

2 SQLAllocConnect

3 SQLDriverConnect: "Driver={Pervasive ODBC Client
Interface};ServerName=<ServerName to
Resolve>;dbq=@<ServerSide DBName>;"
10

Database Connection Quick Reference
Example
Driver={Pervasive ODBC Client

Interface};ServerName=myserver;dbq=@DEMODATA;

Note Releases earlier than Pervasive.SQL 2000 (SP3) supported
DSN-less connections only for applications running local to the
engine (i.e. running on the same machine where the engines
were running). However, the format of the Driver string
changed starting with Pervasive.SQL 2000i (SP3). Any
applications using DSN-less connections will have to be
modified as shown above, and recompiled in order to run
without a DSN under Pervasive.SQL 2000 (SP2a) or earlier.
11

Developer Quick Start
ODBC Information
The implementation and limitations of the Pervasive ODBC
interface is documented in the SQL Engine Reference . This manual is
shipped with Pervasive PSQL Server, Workgroup, and Client
products.

For ODBC information: in SQL Engine Reference, see ODBC
Engine Reference.

For supported SQL syntax: in SQL Engine Reference, see SQL
Syntax Reference.

Other SQL
Access
Methods

ADO/OLEDB
For ADO/OLE DB programming information, see OLE DB Provider
Guide .

JDBC
For JDBC programming to the SQL engine, see the following
sections in JDBC Driver Guide.

Introduction to the Pervasive JDBC Driver

Programming with the Pervasive JDBC 2 Driver

PDAC
Pervasive Direct Access Components are for Delphi and C++ Builder
applications. For more information, see the following topics in
Pervasive Direct Access Components Guide.

Using Direct Access Components

Direct Access Components Reference
12

Additional Resources for Application Developers
Additional Resources for Application Developers
This section provides information on further reading on Pervasive
PSQL concepts:

Conceptual
Information

This manual contains conceptual information on both the
transactional (Btrieve) and relational (SQL) interfaces to the
Pervasive PSQL database.

Reference
Information

Reference information for developers is contained in the various
software development kit (SDK) manuals. In the Eclipse Help that
can be installed with the database engine, refer to the “Developer
Reference” category.

Online
Developer
Resources

Access a wealth of information for developers online at the Pervasive
PSQL Web site: http://www.pervasivedb.com.

Sample Code You can find the sample applications where you install the SDK
component. Some of the available samples include:

ADO/OLE DB Programming using Visual Basic or Visual C++

Pervasive Direct Access Components using Delphi or C++
Builder

Java Programming with the Pervasive Java Class Library or JDBC

Distributed Tuning Interface for Visual C++ or Delphi

Distributed Tuning Objects for Visual Basic
13

Developer Quick Start
14

c h a p t e r
3
Developing Applications for
the Transactional Interface
This chapter includes information you need to consider when
designing your application with Pervasive PSQL’s transactional
interface. These concepts are discussed in the following sections:

Transactional Interface Environment

Configuration Issues for Transactional Interface
15

Developing Applications for the Transactional Interface
Transactional Interface Environment
Before an end user can run your transactional interface application,
a version of transactional database engine must be available to the
end user’s computer. You should provide the end user with
information about any prerequisite the transactional interface
software versions and configurations that your application requires.

Documentation End users should have access to the following Pervasive PSQL
documentation:

Getting Started With Pervasive PSQL. This manual describes
Pervasive PSQL software installation.

Status Codes and Messages. This manual describes the status
codes and system messages that Pervasive PSQL components can
return.

Pervasive PSQL User's Guide. This manual describes Pervasive
PSQL utilities.

If you are a Pervasive OEM Partner, you may bundle these
documents with your application.
16

Configuration Issues for Transactional Interface
Configuration Issues for Transactional Interface
End users may need to know the following information about your
transactional interface application. Include this information in the
documentation you provide with your transactional interface
application.

The amount of memory your application requires.

Your application may require more memory or disk space than
the transactional interface requires on its own. Establish the disk
space and memory requirements of your application and
communicate this information to your users. For information
about system requirements of the transactional interface, refer to
Getting Started With Pervasive PSQL and to the Pervasive
Software Web site.

Whether the application requires the transactional database
engine configuration settings other than the defaults. In
particular, consider whether end users need to change these
transactional database engine options:

Create File Version. Does your application need backward
compatibility with a previous version of the transactional
database engine? If so, instruct your end users to set an
appropriate value for this option.

Handles. Does your application need to use more than 60
logical file handles at one time? If so, instruct your end users
to set this option to an appropriate value.

Index Balancing. Does your application set the Index
Balancing file attribute on every file it creates? If so, your end
users can use the default of Index Balancing turned off. If
not, you may need to instruct your end users to turn Index
Balancing on at the MicroKernel level. For more
information, see Index Balancing.

Largest Compressed Record Size. Does your application use
compressed records? If so, see Record and Page Compression
in Advanced Operations Guide, and Choosing a Page Size,
Estimating File Size, and Record Compression in this book.
17

Developing Applications for the Transactional Interface
System Data. Do all files in your database have unique keys?
If so, the files are transaction durable. If not, your end users
may want to set System Data to If Needed or Always in order
to make the files transaction durable.

For descriptions of configuration options, refer to the Advanced
Operations Guide.
18

c h a p t e r
4
Transactional Interface
Fundamentals
This chapter describes the features of Pervasive PSQL’s the
transactional interface in the following sections:

Overview of the Transactional Interface

Pages

File Types

Data Types

Key Attributes

Database URIs

Double-Byte Character Support

Record Length

Data Integrity

Event Logging

Performance Enhancement

Disk Usage
19

Transactional Interface Fundamentals
Overview of the Transactional Interface
The Btrieve API is a low-level interface to the transactional database
engine that embodies functional aspects of the database design that
might be otherwise transparent in higher-level interfaces such as
SQL, Java, or ODBC. For example, the SQL interface operates
independently of how the data is physically stored. However, the
transactional interface developer must consider lower level aspects
such as page size, physical and logical currency, type verification, and
data validation. Despite these low-level considerations, the Btrieve
API provides excellent flexibility and control over the data.

The transactional database engine stores information in files, which
can be up to 256 GB in size for Pervasive PSQL 9.5 and later, (128 GB
for earlier 9.x versions, and 64 GB for other earlier versions). Inside
each data file are records, which contain bytes of data. A file can
contain up to 4 billion records.

The data in a record might represent an employee’s name, ID,
address, phone number, rate of pay, and so on. However, the
transactional database engine interprets a record only as a collection
of bytes; it does not recognize logically discrete pieces of information
within a record. To the transactional database engine, a last name,
first name, employee ID, and so on do not exist inside a record.

The only discrete portions of information that the transactional
interface recognizes in a record are keys. Keys provide both fast,
direct access to records and a means of sorting records by key values.
Because the transactional interface has no way of knowing the
structure of the records in each file, you define each key by
identifying the following:

Number. This is the key’s order in the list of keys. Version 6.0 and
later files can have gaps between key numbers. That is, the
transactional database engine does not require keys to be
numbered consecutively. When you add a key, you can specify a
key number or let the transactional interface assign the lowest
available key number. When you drop a key, you can leave the
remaining key numbers as is or let the transactional interface
renumber them consecutively.

Position. This is the key’s offset in bytes from the beginning of
the record.

Length. This is the number of bytes to use for the key.
20

Overview of the Transactional Interface
Type. This is the key’s data type.

Attributes. These provide additional information about how you
want the transactional interface to handle the key values. The
transactional interface supports these key attributes:
segmentation, duplicatability, modifiability, sort order, case
sensitivity, alternate collating sequence, and null value.

You can create or drop keys at any time. For each key defined in a
data file, the transactional interface builds an index. The index is
stored inside the data file itself. The index maps each key value in the
file to an offset in the actual data. Normally, when accessing or
sorting data, the transactional interface does not search through all
the records in the file. Instead, it searches the index and then
manipulates only those records appropriate to the request.

You can create indexes when you create the data file, or any time
thereafter. When you create a data file, you can define one or more
keys for the transactional interface to use in building indexes.

You can also define external indexes after creating a file. An external
index file is a standard data file that contains records sorted by the
key you specify. Each record consists of the following:

A 4-byte address identifying the physical position of the record
in the original data file

A key value

Positioning rules (guidelines governing which record is current,
which is next, and so on) are the same, regardless of when you create
an index.

If you create an index at the same time that you create the file, the
transactional interface stores duplicate key values in the
chronological order in which the records are inserted into the file. If
you create an index for a file that already exists, the transactional
interface stores duplicate key values in the physical order of the
corresponding records in the file at the time the index is created.
How the transactional interface stores duplicate key values in an
index also depends on whether the key is linked-duplicatable or
repeating-duplicatable. For more information, refer to
Duplicatability.
21

Transactional Interface Fundamentals
Note The chronological ordering of records can change when
you update records and change their key values, when you drop
and rebuild an index, or when you rebuild the file. Therefore,
you should not assume that the order of records in a file always
reflects the order in which the records were inserted. If you want
to track the order of record insertion, use an
AUTOINCREMENT key.

You can delete, or drop, an index when your application no longer
needs it. The space that the index used in the file is freed for data or
for other index pages. (However, this free space remains allocated to
the file; you will not see a reduction in physical file size after
dropping an index.)

Refer to Chapter 5, Designing a Database for specific information
about defining keys.

Transactional
Interface
Environment

Before an end user can run your transactional interface application,
a version of transactional database engine must be available to the
end user’s computer. You should provide the end user with
information about any prerequisite the transactional interface
software versions and configurations that your application requires.

Configuration Notes
End users may need to know the following information about your
transactional interface application. Include this information in the
documentation you provide with your transactional interface
application.

The amount of memory your application requires.

Your application may require more memory or disk space than
the transactional interface requires on its own. Establish the disk
space and memory requirements of your application and
communicate this information to your users. For information
about system requirements of the transactional interface, refer to
Getting Started With Pervasive PSQL and to the Pervasive
Software Web site.
22

Overview of the Transactional Interface
Whether the application requires the transactional database
engine configuration settings other than the defaults. In
particular, consider whether end users need to change these
transactional database engine options:

Create File Version. Does your application need backward
compatibility with a previous version of the transactional
database engine? If so, instruct your end users to set an
appropriate value for this option.

Handles. Does your application need to use more than 60
logical file handles at one time? If so, instruct your end users
to set this option to an appropriate value.

Index Balancing. Does your application set the Index
Balancing file attribute on every file it creates? If so, your end
users can use the default of Index Balancing turned off. If
not, you may need to instruct your end users to turn Index
Balancing on at the MicroKernel level. For more
information, see Index Balancing.

Largest Compressed Record Size. Does your application use
compressed records? If so, see Record and Page Compression
in Advanced Operations Guide, and Choosing a Page Size,
Estimating File Size, and Record Compression in this book.

System Data. Do all files in your database have unique keys?
If so, the files are transaction durable. If not, your end users
may want to set System Data to If Needed or Always in order
to make the files transaction durable.

For descriptions of configuration options, refer to the Advanced
Operations Guide.
23

Transactional Interface Fundamentals
Pages
This section includes the following information about pages and
how the transactional interface handles them:

Page Types

Page Size

Page Types Files consist of a series of pages. A page is the unit of storage that the
database transfers between memory and disk. A file is composed of
the following types of pages:

All 6.0 and later files have FCR and PAT pages. Standard files also
contain data and index pages, and optionally, variable and ACS
pages. Data-Only Files (page 4-28) contain no index pages. Key-Only
Files (page 4-28) contain no data pages.

File Control Record
(FCR)

Contains information about the file, such as the file size,
page size, and other characteristics of the file. The first
two pages in every 6.0 and later data file are FCR pages.
At any given time, the transactional database engine
considers one of the FCR pages to be current. The
current FCR page contains the latest file information.

Page Allocation Table
(PAT)

Part of the transactional database engine’s internal
implementation for tracking pages in a file.

Data Contains the fixed-length portion of records. The
transactional database engine does not split a single
fixed-length record across two data pages. If a file does
not allow variable-length records or use data
compression, the file has data pages and no variable
pages.

Variable Contains the variable-length portion of records. If the
variable-length portion of a record is longer than the
remaining space on a variable page, the transactional
database engine splits the variable-length portion over
multiple variable pages. If a file allows variable-length
records or uses data compression, the file has both data
and variable pages.

Index Contains key values used in retrieving records.

Alternate Collating
Sequence (ACS)

Contains alternate collating sequences for the keys in a
file.
24

Pages
Page Size You specify a fixed page size when you create a file. The page size you
can specify, the file overhead, and so forth, depends on a variety of
factors, including the file format. See Chapter 5 Designing a
Database for information on page sizes. The following sections
provide an overview:

Page Size Criteria

Large vs. Small Page Size

Page Size Criteria
The page size you specify should satisfy the following criteria:

Enables data pages appropriate to the file’s record length.

Each data page contains a certain number of bytes for overhead.
See Table 19. After that, the transactional database engine stores
as many records as possible in each data page, but does not break
the fixed-length portion of a record across pages.

The optimum page size accommodates the most records while
minimizing the amount of space left over in each data page.
Larger page sizes usually result in more efficient use of disk
space. If the internal record length (user data + record overhead)
is small and the page size is large, the wasted space could be
substantial.

Allows index pages appropriate to the file’s key definitions.

Each index page contains a certain number of bytes for
overhead. See Table 19. After that, the file’s index pages must be
large enough to accommodate eight keys, plus overhead
information for each key (see Tables 17, 18, 19, 20, and 21 for
information the number of bytes of overheard per your
configuration.)

Allows the number of key segments that the file needs.

As discussed in Segmentation, the page size you define for a file
limits the number of key segments you can specify for that file.

Optimizes performance.
25

Transactional Interface Fundamentals
For optimum performance, set the page size to an even power of
two—such as 512; 1,024; 2,048; 4,096; 8,192; or 16,384 bytes.
The internal transactional database engine cache can store
multiple size pages at once, but it is divided in powers of 2. Page
sizes of 1,536; 2,560; 3,072; and 3,584 actually waste memory in
the transactional database engine cache. Page sizes that are
powers of 2 result in a better use of cache.

Large vs. Small Page Size
To make the most efficient use of modern operating systems, you
should choose a larger page size. The smaller page sizes were used
when DOS was the prominent operating system (when a sector was
512 bytes and all I/O occurred in multiples of 512). This is no longer
the case. Both 32-bit and 64-bit operating systems move data around
its cache in blocks of 4,096 bytes or larger. CD ROM drives are read
in blocks of 2,048 bytes.

The transactional interface indexes are most efficient when a page
size of 4,096 bytes or larger is used. The key will have more branches
per node and thus will require fewer reads to find the correct record
address. This is important if the application is doing random reads
using a key. This is not important when an application accesses the
file in a sequential manner either by key or by record.

A good reason for having smaller page sizes is to avoid contention.
With fewer records in each page it becomes less likely that different
engines or transactions will need the same page at the same time. If
a file has relatively few records, and the records are small, you may
want to choose a small page size. The larger the file, the less likely
contention will happen.

Another potential problem with large page sizes is specific to version
7.0 and later files. There is a maximum of 256 records or variable-
length sections that can fit on the same data page. If you have short
or compressed records, or short variable-length sections, you can
easily reach the limit while you still have hundreds of bytes available
on every page. The result is a much larger file than needed. Knowing
your record size, you can calculate how big of an issue this is.
26

Pages
Factors To Consider When Determining Page Size

Keys work better with larger pages. There are more branches per
Btree node and thus fewer levels to the Btree. Fewer levels means
fewer disk reads and writes. Fewer disk reads means better
performance.

Concurrency works better with smaller pages, especially when
client transactions are used. Since the transactional database
engine locks some pages changed during the transaction, all
other clients must wait for locked pages until the transaction is
ended or aborted. With a lot of clients trying to access the same
pages concurrently, the less that is found on each page is better.

Random access to pages works better with smaller pages since
more of the stuff you actually use is in cache. If you access
anything again, it is more likely to be still in cache.

Sequential access to a large volume of records works better with
larger pages since more is read at once. Since you are using most
everything on each page read, there will definitely be fewer reads.

The database designer must choose between these conflicting needs.
A reference table that is not changed very often, but is searched or
scanned most of the time, should have larger page sizes. A
transaction file which is inserted and updated within transactions
should have smaller page sizes.

Note You have to balance these needs.

Only careful consideration of all factors can give the right answer to
what the page size should be. For more information about choosing
a page size, refer to Choosing a Page Size.
27

Transactional Interface Fundamentals
File Types
Btrieve API supports a maximum file size of 256 GB for Pervasive
PSQL 9.5 or later data files (128 GB for earlier 9.x versions and 64 GB
for earlier versions), supports long file names, and supports three
data file types:

Standard Data Files

Data-Only Files

Key-Only Files

Large Files

Long File Names

Note For users of Btrieve 6.x and earlier, Pervasive PSQL can
create files in 8.x and 7.x formats. These newer formats allow for
enhancements and new features.

Btrieve 6.x and earlier cannot open Pervasive PSQL 7.x or 8.x
files. However, Pervasive PSQL v11 SP3 can open pre-7.0 files.
When Pervasive PSQL v11 SP3 opens pre-7.0 files, it does not
convert the files to the 7.0 or 8.0 formats. Also, you can configure
the Pervasive PSQL to create files using a pre-8.0 format. This
may be useful if you want to use newly created pre-V8 files.

Standard Data
Files

A standard 7.x or later data file contains two FCR pages followed by
a number of PAT pages, index pages, data pages, and possibly
variable and ACS pages. You can create a standard file for use with
either fixed- or variable-length records. Because standard files
contain all the index structures and data records, The transactional
interface can dynamically maintain all the index information for the
records in the file.

Data-Only Files When you create a data-only file, you do not specify any key
information, and Pervasive PSQL does not allocate index pages for
the file. This results in a smaller initial file size than for standard files.
You can add keys to a data-only file after creating the file.

Key-Only Files Key-only files contain only FCR pages followed by a number of PAT
pages and index pages. (In addition, if you have defined referential
28

File Types
integrity constraints on the file, the file may contain one or more
variable pages.)

Key-only files include only one key, and the entire record is stored
with the key, so no data pages are required. Key-only files are useful
when your records contain a single key and that key takes up most of
each record. Another common use for a key-only file is as an external
index for a standard data file.

The following restrictions apply to key-only files:

Each file can contain only a single key.

The maximum record length you can define is 253 bytes (255
bytes for a pre-6.0 file).

Key-only files do not allow data compression.

Large Files The transactional interface supports file sizes up to 256 GB for
Pervasive PSQL 9.5 or later (128 GB for earlier 9.x versions and 64
GB for other earlier versions). However, many operating systems do
not support single files this large. In order to support files larger than
the operating system file size limit, the transactional interface breaks
up large files into smaller files that the operating system can support.
A large, logical file is called an extended file. The smaller, physical files
that comprise an extended file are called extension files. The base file
is an original data file that has become too large to support as a
single, physical file. Non-extended (that is, non-segmented) files
provide more efficient I/O and, therefore, increased performance.

You can choose to not to automatically extend Pervasive PSQL 9.x
files or later at 2 GB. To change the segment operation setting access
the configuration settings in the Pervasive PSQL Control Center
(PCC) as described in Configuration Through PCC in Advanced
Operations Guide. From there you can set the Limit Segment Size to
2 GB option.

If this option is unselected, Pervasive PSQL 9.x files will not be
segmented automatically at 2 GB. Version 8.x and earlier data files
will continue to be extended when they reach 2 GB. If your files are
already extended, they will remain segmented.

Regardless of the configuration setting, all files will continue to be
extended based on the file size limitations of the current operating
system.
29

Transactional Interface Fundamentals
For information about backing up files, including extended files,
refer to Backing Up Your Files.

Long File
Names

The transactional interface supports long file names whose length is
less than or equal to 255 bytes. The following items must conform
to this upper limit:

The localized multi-byte or single byte version of the string

The UNC version of the file name that is created by the
requesters, which is in UTF-8 UNICODE format.

The file name cannot contain spaces unless the Embedded Spaces
client configuration option is enabled. The default setting is On. See
Advanced Operations Guide (Long File Names and Embedded Spaces
Support).

When the transactional interface generates new files based on an
existing file name, such as with Large Files (page 4-29) or during
Archival Logging or Continuous Operations (for more information,
see Chapter 8, Logging, Backup, and Restore in Advanced Operations
Guide), the new file name includes as much of the original file name
as possible and an appropriate file extension, as in the following
examples:

Original File Name Generated File Name in Continuous
Operation

LONG-NAME-WITHOUT-ANY-
DOTS

LONG-NAME-WITHOUT-ANY-DOTS.^^^

VERYLONGNAME.DOT.DOT.MKD VERYLONGNAME.DOT.DOT.^^^
30

Data Types
Data Types
When using 7.x or a later file format, you can use the following data
types when you define a key:

If you are using the 6.x file format, you can use all the preceding types
to define a key except for CURRENCY and TIMESTAMP.

If you are using a file format prior to 6.x, NUMERICSA and
NUMERICSTS are not available as data or key types.

For more information on data types, see the following topic in SQL
Engine Reference: Data Types.

AUTOINCREMENT BFLOAT CURRENCY

DATE DECIMAL FLOAT

INTEGER LSTRING MONEY

NUMERIC NUMERICSA NUMERICSTS

TIME TIMESTAMP UNSIGNED BINARY

ZSTRING WSTRING WZSTRING

NULL INDICATOR
31

Transactional Interface Fundamentals
Key Attributes
The following sections describe the attributes you can assign when
you define a key:

Key Attributes Description

Key Specification

Key Attributes
Description

This section contains information on attributes that you can assign
to keys:

Segmentation

Duplicatability

Modifiability

Sort Order

Case Sensitivity

Null Value

Alternate Collating Sequences

Segmentation
Keys can consist of one or more segments in each record. A segment
can be any set of contiguous bytes in the record. The key type and
sort order can be different for each segment in the key.

he number of index segments that you may use depends on the file’s
page size.

Page Size (bytes) Maximum Key Segments byFile Version

8.x and prior 9.0 9.5

512 8 8 rounded up2

1,024 23 23 97

1,536 24 24 rounded up2

2,048 54 54 97

2,560 54 54 rounded up2

3,072 54 54 rounded up2

3,584 54 54 rounded up2
32

Key Attributes
See status codes 26: The number of keys specified is invalid and 29:
The key length is invalid for related information about index
segments and the transactional interface.

The total length of a key is the sum of the length of the key segments,
and the maximum length is 255 bytes. Different key segments can
overlap each other in the record.

When a segmented key is a nonduplicatable key, the combination of
the segments must form a unique value; however, individual
segments may contain duplicates. When you are defining this type of
segmented key, each segment has duplicates=no as a key-level
attribute even though that particular segment may have duplicates.
To ensure that a particular segment is always unique, define it as a
separate nonduplicatable key in addition to the segmented key
definition.

When issuing a call to the transactional interface, the format of the
key buffer must be able to accommodate the key specified by the key
number. So, if defined keynumber=0 and key 0 is a 4-byte integer, the
key buffer parameter can be any of the following:

a pointer to a 4-byte integer

a pointer to a structure where the first (or only) element is a 4-
byte integer

a pointer to a 4-byte (or longer) string or byte array

4,096 119 119 119 or 2043

8,192 n/a1 119 119 or 4203

16,384 n/a1 n/a1 119 or 4203

1”n/a” stands for “not applicable”

2”rounded up” means that the page size is rounded up to the next size
supported by the file version. For example, 512 is rounded up to 1,024,
2,560 is rounded up to 4,096, and so forth.

3The maximum number of index segments that can be used with the
relational interface is 119. For the transactional interface, the maximum
number is 204 for a page size of 4,096, and 420 for page sizes 8,192 and
16,384.

Page Size (bytes) Maximum Key Segments byFile Version

8.x and prior 9.0 9.5
33

Transactional Interface Fundamentals
Basically, the transactional interface gets a pointer to a memory
location to be used as a key buffer. The transactional interface
expects that memory location to have a data value corresponding to
the specified key number for certain operations, such as Get Equal.
In addition, the transactional interface may write data out to that
location, and the data written will be a key value corresponding to
the specified key number. In this situation, the memory location
must be allocated large enough to accommodate the entire key value.

To the transactional interface, a key is a single collection of data; even
if it is made up of multiple segments. The segment feature allows you
to combine non-contiguous bytes of data together as a single key. It
also allows you to apply different sorting rules (as dictated by the
supported data types) to different portions of the key data. The data
type associated with a key segment is used typically as a sorting
rule— it tells the transactional interface how to compare two values
to determine which one is larger. Data types are not used to validate
data.

The transactional interface always deals with an entire key, not a key
segment. To work with any key, set up a key buffer that is large
enough to hold the entire key. Some applications define a generic 255
byte buffer to use on all calls to the transactional interface; the
maximum size of a key is 255 bytes, which is a sufficient size. When
data is returned in this key buffer, the application usually copies data
out of the generic buffer into an application variable or structure
declared as the same type(s) as the key segment(s). Alternatively, pass
a key buffer parameter (simple variable or structure variable) that
directly corresponds to the key.

For example, suppose you want to read a record and only know the
value of the first segment of the key, but not all segments. You can
still utilize that key to find the data. However, you still have to pass in
an entire key buffer corresponding to all segments. Because you only
know part of the key value, you cannot use the Get Equal call. You
have to use the Get Greater Or Equal call. In this case, initialize the
key buffer with as many key values as you know and then specify low
or null values for the unknown key segments.

For example, given a key 1 definition of three segments
corresponding to data values ulElement2, ulElement3, and
ulElement5, if you know what value you want for ulElement2, you
would initialize your key buffer as:

SampleKey1.ulElement2 = <search value>;
34

Key Attributes
SampleKey1.ulElement3 = 0;
SampleKey1.ulElement5 = 0;

and then pass &SampleKey1 as the key buffer parameter on a Get
Greater Or Equal call. When the transactional interface completes
the call and a record is found, Status Code 0 is returned, the
corresponding data record is returned, and the key buffer is set to
have the key value including all three segments.

Duplicatability
Pervasive PSQL supports two methods for handling duplicate key
values: linked (the default) and repeating. With linked-duplicatable
keys, the transactional interface uses a pair of pointers on the index
page to identify the chronologically first and last records with the
same key value. Additionally, the transactional interface uses a pair
of pointers in each record on the data page to identify the
chronologically previous and next records with the same key value.
The key value is stored once, and only on the index page.

With repeating-duplicatable keys, the transactional interface uses a
single pointer on the index page to identify the corresponding record
on the data page. The key value is stored on both the index page and
the data page. For more information on duplicate keys, see
Duplicatable Keys.

Modifiability
If you define a key as modifiable, the transactional interface enables
you to change the value of a key even after the record is inserted. If
one segment of a key is modifiable, all the segments must be
modifiable.

Sort Order
By default, the transactional interface sorts key values in ascending
order (lowest to highest). However, you can specify that the
transactional interface order the key values in descending order
(highest to lowest).
35

Transactional Interface Fundamentals
Note Use caution when using descending keys with the
transactional interface Get operations (Get Greater (8), Get
Greater or Equal (9), Get Less Than (10), and Get Less Than or
Equal (11)). In this context, Greater (or Less) refers to the order
with respect to the key; in the case of a descending key, this order
is the opposite of the corresponding ascending key.

When you perform a Get Greater operation (8) on a descending key,
the transactional interface returns the record corresponding to the
first key value that is lower than the key value you specify in the key
buffer. For example, consider a file that has 10 records and a
descending key of type INTEGER. The actual values stored in the 10
records for the descending key are the integers 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9. If the current record’s key value is 5 and you perform a Get
Greater operation, the transactional interface returns the record
containing the key value 4.

Similarly, when you perform a Get Less Than operation (10) using a
descending key, the transactional interface returns the record with
the next higher value than the one you specify in the key buffer.
Using the preceding example, if the current record’s descending key
has a value of 5 and you perform a Get Less Than operation, the
transactional interface returns the record containing the key value 6.

Case Sensitivity
By default, the transactional interface is case sensitive when sorting
string keys; that is, it sorts uppercase letters before lowercase letters.
When you define a key to be case insensitive, the transactional
interface sorts values without distinguishing case. Case sensitivity
does not apply if the key has an alternate collating sequence (ACS).

Null Value
Pervasive PSQL v11 SP3 contains two methods of identifying a
column of data as a Null value. The original type of Null value
(referred to as legacy null) has been used in the transactional
interface for years, and a new type of Null identification referred to
as a true null. This section will briefly describe the legacy nulls and
then detail the use of the true nulls in the transactional interface.
36

Key Attributes
Legacy Null

The original method of defining a nullable field is referred to as
Pseudo-Null or Legacy-Null. It is based on the premise that if the
entire field is full of a particular byte value, typically ASCII zero, then
the field is considered Null. The byte value is defined in the key
definition supplied when creating the index. Using the transactional
interface, the only thing that the transactional database engine can
do with this knowledge is to decide whether or not to include the
field in an index. There are no special sorting rules for Legacy Nulls
since they are just values that sort just like all the other values, despite
their special meaning.

If a key description contains the flag for "All Segments Null"
(0x0008), then the key value is not put into the index if each and
every segment in the key is considered to be Null by having the 'Null
byte' in every byte of the field. Likewise, if a key description contains
the flag for "Any Segment Null" (0x0200), then the key value is not
put into the index if any one or more of the key segments is
considered to be Null by the same rule

The SQL Relational Database Engine (SRDE) never uses these flags
in the indices that it defines. The SRDE does not use these flags
because in order to make joins between tables, all records in the table
must be accessible through the index.

True Null Indexes

Starting with Pervasive.SQL 2000, a new type of Null Indicator was
introduced called true null.

True nulls are implemented in the transactional interface by
preceding a nullable field with a one byte Null Indicator Segment
(NIS). This is an extra byte of data outside the normal column width
that indicates whether the column is Null or not. A value of zero in
this byte indicates that the column associated with it is normal, or
Not Null. Any other value in this byte indicates that the column
value is Null.

With true nulls, unlike legacy nulls, you can tell the difference
between an integer that is zero and one that is Null. This is true for
any type of number field. You can even distinguish a string field that
has a zero length string in it from one that should be identified as
null, if there is a need for such a distinction.
37

Transactional Interface Fundamentals
The SRDE can identify and use true null columns whether or not
there is an index defined on them, but a basic data file only identifies
the fields that are included in keys.

You can define true null fields within transactional interface keys by
adding a Null Indicator Segment (NIS) before the nullable field in
the key definition of a Create (14) or Create Index (31) operation.
See Rules for True Null Keys for the rules regarding true null keys.

The transactional interface does not enforce any restrictions on the
offset of the NIS whereas the SRDE assumes that it is immediately
preceding the nullable field. As such, Pervasive recommends that
you structure the fields within your record to make room for the NIS
in the byte preceding any field that will use an NIS. This preserves
your ability to access these tables through SQL should you need to do
so.

Rules for True Null Keys

The following rules must be followed when using this new key type;

1 The field length must be 1.

2 The field must precede another field in the index. In other
words, this must be a multi-segmented index with the NIS being
defined immediately before another segment. The NIS cannot
be the last or only key segment.

3 The field immediately following it is affected by the contents of
the NIS. If the NIS is zero, then the following field is considered
non-null. If this field is anything other than zero, the field is
considered NULL.

4 The offset of the NIS should be the byte preceding the following
field. This is the way the Pervasive PSQL relational engine
expects these fields to align. Therefore, if a data dictionary is
created for this index, the NIS should be immediately preceding
the field it controls. That said, there is nothing in the
transactional API that makes this a requirement.

NIS Values

Any non-zero value is considered an indicator that the following
segment is null. By default, the MKDE makes no distinction between
non-zero numbers. The Pervasive PSQL relational engine currently
uses only a value of 1 in this field to indicate a null. It is possible,
however, to make a distinction between different types of NULLs.
38

Key Attributes
This can be done by using the Case Insensitive flag on the NIS. Since
this key flag is normally only applicable to the various string and
character fields, it is overloaded to have the special meaning of
DISTINCT when used with an NIS. It means that different NIS
values should be treated distinctly and sorted separately. Pervasive
Software reserves the use of the first 15 values for future use. If you
want to apply a special meaning to various types of nulls in your
application, please use NIS values greater than 16. For example,
more specific Null definitions could be:

Not applicable

To be determined

Cannot be determined

Undetectable

No value yet, but needed soon

When you add the DISTINCT flag (Case Insensitive) to the NIS,
these non-zero values will be sorted separately as distinct values.

Sorting of True Null Values

A true null field has a non-determinate value. In other words, its
value cannot be known. According to this definition, no two Null
values are equal to each other, nor are they equal to any other key
value. Yet the transactional database engine must group these Null
values together and you must be able to find key values that are equal
to Null. To accomplish this, the transactional database engine
interprets true null values as if they are equal to each other,
depending on the purpose of the comparison. When sorting, and
finding a place for the Null values in an index, true null values are
grouped together as if they were equal to each other. But when trying
to determine if a value already exists in a unique index, true nulls are
not equal to each other.

Any non-zero value in the NIS means the following field is Null. The
default behavior is to treat all non-zero values in the NIS as if they
were the same value and interpret them to indicate that the nullable
field is Null. As such, if you insert records that contain a variety of
non-zero values in the NIS and a variety of values in the nullable field
that follows, they will all be interpreted as the same value, and will be
sorted as a collection of duplicates.
39

Transactional Interface Fundamentals
Linked Duplicate Keys and True Nulls

This section discusses the results of inserting several Null values into
a Linked Duplicate key into a Linked Duplicate key.

Linked Duplicates contains a single key entry for each unique value,
with two record address pointers; one for the first duplicate record
and one for the last record in the duplicate chain. Each record
contains 8 bytes of overhead consisting of pointers to the previous
and next records in the chain. Each new duplicate value is added at
the end of the chain, thus ensuring that the duplicate records are
linked in the order they were inserted. All true null values are
considered duplicates for the purpose of adding them to an index, so
they all will be linked to the same chain in the order they were
inserted. Even if each record contained different byte values in the
NIS and the associated nullable field, there will only be one key entry
pointing to the first and last record in this chain. If the NIS key
segment is defined as descending, this key entry will occur first in the
index. Otherwise, it will occur last.

Repeating Duplicate Keys and True Nulls

Repeating Duplicate Keys contain an actual key entry for each record
represented in the index. There is no overhead in the record itself
and for each record, there is a key entry that points to it. Duplicate
values in this kind of index are sorted by the physical record address
to which they point. This means that the order of duplicates is
unpredictable, especially in a highly concurrent environment where
random records are being inserted and deleted by many clients.

True Null values are interpreted as if they are duplicates and are
sorted not by the bytes found in the nullable field, but rather by the
record address. So when using repeating duplicate keys, the records
containing true null values are grouped together, but in a random
fashion. If the NIS segment is descending, they will occur first in the
index, otherwise, they will occur last.

Unique Keys and True Nulls

In the transactional interface, if you define an index without either
duplicate flag, the index must contain only unique values. But since
the value of a true null field is indeterminate, they should not be
considered duplicates. For this reason, the transactional database
engine allows multiple true null values to be entered into a unique
key, assuming that once the value is assigned with an Update
40

Key Attributes
operation, then the uniqueness of the key can be determined. But for
the purposes of sorting these values in the index, the transactional
database engine groups them all together as if they were duplicates.
So the section of the index containing the true null values resembles
a Repeating Duplicate index. The nulls are sorted together according
to the physical record address, the order of which cannot be
predicted.

Non-Modifiable Keys and True Nulls

Once you put a value into a non-modifiable key, it cannot be
changed. But because a true null value does not have an actual value,
the transactional interface allows you to insert a record with a true
null value in any or all fields defined in true null indexes, and then
later change those field values in an Update operation from null to
non-null. But once any field has become non-null, the non-
modifiability is enforced and it cannot be changed again, even if to
establish the field as null again.

Get Operations and True Nulls

Even though true null values are indeterminate and are not
considered equal to each other, it is possible to locate a record with a
true null key segment.

The various Get operations can address true null keys by using this
sequence:

1 Place the non-zero value in the NIS byte

2 Place the full key into the Key Buffer

3 Perform a Get operation as if true null values are equal to each
other.

The following list shows the expected behavior from the Get
operations:

Get Equal and Get Greater Than or Equal will return the first
record with a null in the forward direction.

Get Less Than or Equal will return the last record with a null as
viewed from the forward direction.

Get Less Than will return the record before the null values

Get Greater Than will return the record after the null values.
41

Transactional Interface Fundamentals
This is consistent with the behavior of the Get operations for normal
duplicate values.

Distinct True Nulls

It is possible to distinguish between different values in the NIS byte.
The default behavior, as indicated, is that all non-zero values in the
NIS are considered to be the same thing, and whatever the NIS
contains, if it is not zero, the nullable field is Null. The SRDE
currently uses this default behavior on all true null index segments
that it creates.

However, if you want to store different kinds of Null values in your
table, then you can add the NOCASE flag (0x0400) to the key
definition of the NIS segment. Hereafter, we will call this the
DISTINCT flag. When you do this, the transactional database
engine will treat different NIS values as different or distinct from
each other.

Distinct True Null segments are sorted in groups by their NIS value.
The same rules apply as discussed above when building the various
types of indexes. A linked duplicate key will have a single entry for
each distinct NIS value with a pointer to the first and last occurrence
of that type of Null. Repeating Duplicates and Unique keys will also
group the null records by their distinct NIS value. Descending Keys
have the highest NIS values grouped first, sorted down to the zero, or
non-null values. Ascending keys sort the non-null records first,
followed by NIS values of 1, then 2, and so on. Get operations pay
attention to the value of the NIS. If you do a GetEQ using a key
buffer where the NIS is 20, and all the NIS values in a Distinct True
Null index are 1, then the transactional database engine will not find
any matching values.

Although the SRDE nor any other Pervasive PSQL access method
currently uses the DISTINCT flag when creating true null indexes,
they might in the future. For this reason, Pervasive would like to
reserve NIS values 2 through 16 for future use, in case we need to
assign specific meanings to these 'types' of nulls. So if you use
distinct null values for records accessed through the transactional
Btrieve API, use values greater than 16.

Multi-Segmented True Null Keys

Consider a multi-segmented True Null index containing two
nullable string columns. The key would actually be defined as a four
42

Key Attributes
segment index. The first segment is an NIS, followed by the first
nullable field, then the second NIS followed by the second nullable
field. Now consider what would happen if the following records
were put into the file.

"AAA", NULL "BBB", NULL "CCC", NULL NULL, NULL
"AAA", "AAA" "BBB", "AAA" "CCC", "AAA" NULL, "AAA"
"AAA", "BBB" "BBB", "BBB" "CCC", "BBB" NULL, "BBB""
"AAA", "CCC" "BBB", "CCC" "CCC", "CCC" NULL, "CCC"

plus a couple more of these records; "BBB", NULL

The SRDE always creates True Null index segments such that the
NULL values will occur first. It does this by adding the Descending
flag (0x0040) to each NIS segment. Let's assume that the descending
flag is used on each NIS and on the second nullable field, but not the
first nullable field. If so, these records would be sorted like this.

1 NULL, NULL
2 NULL, "CCC "
3 NULL, "BBB""
4 NULL, "AAA "
5 "AAA", NULL
6 "AAA", "CCC"
7 "AAA", "BBB"
8 "AAA", "AAA"
9 "BBB", NULL
10 "BBB", NULL
11 "BBB", NULL
12 "BBB", "CCC "
13 "BBB", "BBB"
14 "BBB", "AAA "
15 "CCC", NULL
16 "CCC", "CCC "
17 "CCC", "BBB"
18 "CCC", "AAA "

The nulls always occur before the non-nulls since both NIS are
descending. But when the NIS is zero, i.e, the fields are non-null, the
first field is sorted ascending and the second is sorted descending.

The following is what would be returned by various Get operations;

GetLT "BBB", NULL returns record 8 "AAA", "AAA"

GetLE "BBB", NULL returns record 11 "BBB", NULL

GetEQ "BBB", NULL returns record 9 "BBB", NULL

GetGE "BBB", NULL returns record 9 "BBB", NULL
43

Transactional Interface Fundamentals
GetGT "BBB", NULL returns record 12 "BBB", "CCC "

The GetLE has the implication that you are looking to traverse the
file in the reverse direction, so it returns the first occurrence of a key
value that "matches" in the reverse direction. GetEQ and GetGE
imply that you are moving in the forward direction.

Excluding Records from an Index

As with legacy nulls, you can also apply the flag for "All Segments
Null" (0x0008) or "Any Segment Null" (0x0200) to each segment of
any index containing an NIS. When you insert a record, the
transactional database engine will determine of the nullable field is
Null using the NIS. The same rules apply to determine if the key
entry will be put into the index or not.

Note Files created by the SRDE do not use these flags.

So you should not use these flags if you think that you might at some
point want to access these files from SQL, where a goal might be to
find any records "where column IS NULL". The SRDE will use the
index to find the null records, but they will not be accessible through
the index.

Use of Null Indicator Segment in Extended Operations.

Extended operations allow your application to access fields in a table
even if they do not have indexes created for them. You can apply a
filter to the fields in your record, defining fields on the fly, using
knowledge of the record from any source. Thus it is possible to
define True Null fields in an extended operation and have the
transactional database engine apply the same comparison rules that
it would when sorting these fields into an index.

You must define the extended operations filter just like you would
define a key. Include a filter segment for the NIS followed by the
nullable field. You must include the nullable field in the filter even if
you are searching for a null value, where the content of the nullable
field does not matter. The MKDE needs both filter segments so that
a GetNextExtended can be optimized against an index path and it
enforces this with status 62, indicating that a filter expression for an
NIS was not followed by a non-NIS.
44

Key Attributes
The only comparison operator you can use for an NIS is EQ or NE.
You will get status 62 if you try to use any of the other comparison
operators; GT, GE, LT & LE.

A status 62 occurring from a badly formed extended operation
descriptor adds a system error Pervasive Event Log. These system
errors are listed in table 2 to help you identify the reason for the
status 62.

If you want to treat different NIS values distinctly, then add 128 to
the comparison operator on the NIS field. This is the same bias value
that you would use to indicate case insensitivity. And just like when
defining an index, the case insensitive flag has been overloaded for
Null Indicator key types to indicate that the non-zero values should
be compared distinctly meaning that they should be distinguished
from one another instead of treating them all the same.

If you are using the extended operations to get the best performance
possible, you will be trying to search along a key path for specific
limited ranges of key values. First, establish currency at the
beginning of the range by using GetGE. Then follow that with
GetNextExtended. Or, you can do a GetLE followed by
GetPrevExtended. These extended operations can stop searching
automatically when there is no more chance of finding any more
values that match the filter. This is called extended operation
optimization. If your filter can use optimization, it will be much
more efficient because there may be a huge number of records that
can be skipped and not read from the file. In order to create an
optimized search, you need to be traversing the index in a direction
where a limit exists. Also, your filter must exactly match the index,
using AND instead of OR as segment connectors.

If you do a GetNextExtended on an ascending index, then an
optimized filter can stop at the limit when the conditional operator
is EQ, LT or LE. A search will have to look to the end of the file for
values greater than a particular value going forward along an
ascending index. Likewise, if it is a descending index, then it can stop
at a limit when the conditional operator is EQ, GT or GE. This can
get much more complicated when there are multiple fields in the
search criteria. The simple way to think about it is that in order to
optimize a filter, only the last segment can have any other conditional
operator than EQ. This includes the NIS. If the conditional operator
on an NIS is NE, the filter can only be optimized up to the previous
filter segment.
45

Transactional Interface Fundamentals
Exactly matching the index means that each filter expression should
follow the order of the segments in the index, have the same offset,
length, key type, case sensitivity (or distinct flag) & ACS
specification. Without these things matching the index, extended
operations cannot be optimized.

True Nulls and the SQL Engine

True nulls are implemented in the SRDE through the use of the Null
Indicator key type and follow the rules described above. The
transactional interface applications can also use this key type to
identify the nullness of a nullable field regardless of its contents. This
provides a way to identify null integers and other number data types,
and fully manage these nullable fields.

True Nulls and Extended Operations

Status 62 occurring on an extended operation indicates that the
descriptor is incorrect. Sometimes, it may be difficult to determine
what exactly is wrong with the descriptor. The database engine adds
a line in the Pervasive Event Log that can be used to determine the
exact problem. The Event Log entry will look similar to the
following:

12-12-2008 11:12:45 W3MKDE 0000053C W3dbsmgr.exe
MY_COMPUTER E System
Error: 301.36.0 File: D:\WORK\TEST.MKD

The number immediately after the system error 301 through 318,
will identify the problem as follows;

Table 2 System Error Codes

System Error Description

301 The descriptor length is incorrect.

302 The descriptor ID must be either "EG" or "UC".

303 One of the field types is not valid.

304 The NOCASE flag on the operator can only be used with
string & Null Indicator types.

305 The ACS flags(0x08 & 0x20) on the operator can only be
used with string types.

306 An unbiased operator is equal to zero.
46

Key Attributes
Alternate Collating Sequences
You can use an alternate collating sequence (ACS) to sort string keys
(types STRING, LSTRING, and ZSTRING) differently from the
standard ASCII collating sequence. By using one or more ACSs, you
can sort keys as follows:

By your own user-defined sorting order, which may require a
sorting sequence that mixes alphanumeric characters (A-Z, a-z,
and 0-9) with nonalphanumeric characters (such as #).

By an international sorting rule (ISR) that accommodates
language-specific collations, including multi-byte collating
elements (such as ll in Spanish), diacritics (such as ô in French),
and character expansions and contractions (such as ß expanding
to ss in German).

Files can have a different ACS for each key in the file, but only one
ACS per key. Therefore, if the key is segmented, each segment must

307 An unbiased operator is greater than six.

308 An invalid expression connector was found.Only 0, 1 &2 are
allowed

309 The ACS is not defined.

310 The last expression needs a terminator.

311 A terminator was found before the last expression. The filter
segment count may be wrong.

312 The number of records to extract is zero.

313 One of the extractor field lengths is zero.

314 A Null Indicator Segment must be followed by another field.

315 A Null Indicator Segment must be connected to the next
segment with an AND

316 A Null Indicator Segment can only be used with EQ or NE.

317 A Null Indicator Segment can not follow another NIS.

318 A field following a Null Indicator Segment can not be longer
than 255 bytes.

Table 2 System Error Codes

System Error Description
47

Transactional Interface Fundamentals
use either the key’s specified ACS or no ACS at all. For a file in which
a key has an ACS designated for some segments but not for others,
the transactional interface sorts only the segments that specify the
ACS.

User-Defined ACS
To create an ACS that sorts string values differently from the ASCII
standard, use the format shown in the following table.

Because ACSs are created using a hex editor or defined when creating
a transactional interface application, user-defined ACSs are useful to
application developers and not typically created by end users.

Following are a 9-byte header and a 256-byte body that represent a
collating sequence named UPPER. The header appears as follows:

AC 55 50 50 45 52 20 20 20

The 256-byte body appears as follows (with the exception of the
offset values in the leftmost column):

00: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20: 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30: 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40: 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50: 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60: 60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
70: 50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
80: 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

Table 3 User-Defined Alternate Collating Sequence Format

Offset Length Description

0 1 Signature byte. Specify 0xAC.

1 8 A unique 8-byte name that identifies the ACS
to the transactional interface.

9 256 A 256-byte map. Each 1-byte position in the
map corresponds to the code point having the
same value as the position’s offset in the map.
The value of the byte at that position is the
collating weight assigned to the code point.
For example, to force code point 0x61 (a) to
sort with the same weight as code point 0x41
(A), place the same values at offsets 0x61 and
0x41.
48

Key Attributes
90: 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0: A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0: B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
C0: C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
D0: D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
E0: E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
F0: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

The header and body forming this ACS are shipped with Pervasive
PSQL as the file UPPER.ALT. UPPER.ALT provides a way to sort keys
without regard to case. (You can define a key to be case-insensitive;
even so, UPPER provides a good example when writing your own
ACS.)

Offsets 0x61 through 0x7A in the example have been altered from the
standard ASCII collating sequence. In the standard ASCII collating
sequence, offset 0x61 contains a value of 0x61 (representing
lowercase a). When a key is sorted with the UPPER ACS, the
transactional interface sorts lowercase a (0x61) with the collation
weight at offset 0x61: 0x41. Thus, the lowercase a is sorted as if it
were uppercase A (0x41). Therefore, for sorting purposes UPPER
converts all lowercase letters to their uppercase equivalents when
sorting a key.

The following 256-byte body performs the same function as
UPPER.ALT’s body except that ASCII characters preceding the
ASCII space (0x20) are now sorted after all other ASCII characters:

00: E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
10: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF
20: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
30: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
40: 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
50: 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
60: 40 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
70: 30 31 32 33 34 35 36 37 38 39 3A 5B 5C 5D 5E 5F
80: 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
90: 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
A0: 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
B0: 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
C0: A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
D0: B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
E0: C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
F0: D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

In this body, different collating weights have been assigned so that a
character’s weight no longer equals its ASCII value. For example,
offset 0x20, representing the ASCII space character, has a collating
49

Transactional Interface Fundamentals
weight of 0x00; offset 0x41, representing the ASCII uppercase A, has
a collating weight of 0x21.

To sort keys without regard to case, offsets 0x61 through 0x7A in the
last example have been altered. As in the body for UPPER.ALT, offset
0x61 has the same collating weight as offset 0x41: 0x21. By having the
same collating weight, offset 0x41 (A) sorts the same as offset 0x61
(a).

International Sort Rules
To specify an ACS that sorts string values using an ISO-defined,
language-specific collating sequence, you must specify an ISR table
name, as follows:

The ISR tables are provided with Pervasive PSQL and are based on
ISO-standard locale tables. ISR tables are stored in the
COLLATE.CFG file, which is installed with the Pervasive PSQL
database engine. Multiple data files can share a single ISR.

For sample collations, refer to Appendix A, Sample Collations Using
International Sorting Rules.

Key
Specification

When creating indexes using either CREATE (14) or CREATE
INDEX (31), the key specification structures (index segment

Table 4 ISR Table Names

Locale/Language Code Page ISR Table Name

US/English 437 MS-DOS Latin-US

850 MS-DOS Latin-1

PVSW_ENUS00437_0

PVSW_ENUS00850_0

France/French 437 MS-DOS Latin-US

850 MS-DOS-Latin-1

PVSW_FRFR00437_0

PVSW_FRFR00850_0

Germany/German 437 MS-DOS Latin-US

850 MS-DOS Latin-1

PVSW_DEDE00437_0

PVSW_DEDE00850_0

Spain/Spanish 437 MS-DOS Latin-US

850 MS-DOS Latin-1

PVSW_ESES00437_0

PVSW_ESES00850_0

Japan/Japanese 932 Shift-JIS PVSW_JPJP00932_1
50

Key Attributes
descriptor) are provided. Each key specification is 16 bytes long, and
contains the following information:

Table 5 Key Specification Structure

Field Data
Type

Lengt
h

NIS Segment Description

Key Position Short Int 2 Any offset in the
fixed-length part of
the record.

The relative
position of the key
within the record.

Key Length Short Int 2 1 The length of the
key. Always 1
byte.

Key Attributes Short Int 2 xxxxxxx1xxx1xxxx

FEDCBA987654321
0

The key attributes.
See next section
for detail
attributes.

Reserved Byte 4 N/A Not used.

Extended Data
Type

Byte 1 255 (0xFF) Specify one of the
extended data
types. A new data
type is defined for
NULL_INDICATO
R

Null Value (non-
indexing value)

Byte 1 N/A Specify an
exclusion value
for the key.

Reserved Byte 2 N/A Not used.

Manually
Assigned Key
Number

Byte 1 A key number.

ACS Number Byte 1 N/A The Alternate
Collating
Sequences (ACS)
number.
51

Transactional Interface Fundamentals
The following segment-specific key flags should be "on" with the
NIS: SEGMENTED (0x0010), EXTENDED DATA TYPE
(0x0100).

The following flags should be "off ": none

The following flags are ignored: BINARY (0x0004), ACS
(0x0020).

Limitations and Side Effects

There are a few limitations with true null support:

Table 6 Key Attributes

Attribute Binary Hex Description

Duplicate 0000 0000 0000 0001 0x0001

Modifiable 0000 0000 0000 0010 0x0002

Binary 0000 0000 0000 0100 0x0004

Null Key (All Segments) 0000 0000 0000 1000 0x0008

Segmented 0000 0000 0001 0000 0x0010

ACS 0000 0000 0010 0000 0x0020

Sort Order 0000 0000 0100 0000 0x0040

Repeating Duplicates 0000 0000 1000 0000 0x0080

Extended Data Type 0000 0001 0000 0000 0x0100

Null Key (Any Segment) 0000 0010 0000 0000 0x0200

Case Sensitivity
(Distinct)

0000 0100 0000 0000 0x0400

Existing ACS 0000 1000 0000 0000 0x0800 Internal Use Only

Reserved 0001 0000 0000 0000 0x1000

Page Compression 0010 0000 0000 0000 0x2000 See Creating a
File with Page
Level
Compression

Pending Key 1000 0000 0000 0000 0x8000 Internal Use Only
52

Key Attributes
Referential Integrity: current MKDE supports only CASCADE
and RESTRICT actions on delete, RESTRICT action on update.
While SQL-92 defines CASCADE, RESTRICT, SET DEFAULT,
and SET NULL on both delete and update.

Limited number of segments: The number of index segments
used for key indexing will increase because each nullable column
occupies two segments. While the maximum number of index
segments per data file is the same:

Table 7 Maximum Number of Index Segments per Page

Page Size (bytes) Maximum Key Segments byFile Version

8.x and prior 9.0 9.5

512 8 8 rounded up2

1,024 23 23 97

1,536 24 24 rounded up2

2,048 54 54 97

2,560 54 54 rounded up2

3,072 54 54 rounded up2

3,584 54 54 rounded up2

4,096 119 119 119 or 2043

8,192 n/a1 119 119 or 4203

16,384 n/a1 n/a1 119 or 4203

1”n/a” stands for “not applicable”

2”rounded up” means that the page size is rounded up to the next size
supported by the file version. For example, 512 is rounded up to 1,024,
2,560 is rounded up to 4,096, and so forth.

3The maximum number of index segments that can be used with the
relational interface is 119. For the transactional interface, the maximum
number is 204 for a page size of 4,096, and 420 for page sizes 8,192 and
16,384.
53

Transactional Interface Fundamentals
Database URIs
A key concept in using the Btrieve Login API or the implicit login
functionality via the Create or Open functions is the database URI
(Uniform Resource Indicator). It provides a syntax to describe the
address of a database resource on a server.

This section describes the syntax and semantics of the URIs used in
Btrieve APIs.

Syntax A URI uses the following syntax:

access_method://user@host/dbname?parameters

Table 8 Elements of a Database URI

Element Definition

access_method The method used to access the database. This element is required. Currently, only btrv is
supported.

user@ An optional user name. The password for the user is specified in parameters if needed.
The “@” character must be used to delimit the user name even if no host is specified.

host A server where the database is located. The local machine is assumed if host is not
specified. Host can be a machine name, an IP address, or the keyword “localhost.”

Note: host is a required element if the URI is accessing a database on a Linux operating
system.
54

Database URIs
Parameter
Precedence

The database engine enforces a precedence level on the parameters
“file,” “table” and “dbfile” when more than one of them is specified
in a URI. That is, after parsing, the database engine leaves the
parameter with the highest precedence. If two or more have the same
precedence, the last parameter in the URI is returned after parsing.

The order of precedence from highest to lowest is “file,” “table” and
“dbfile.”

dbname An optional database name, which corresponds to an entry in the DBNAMES.CFG file for
the Pervasive PSQL database engine. If no database name is specified, then the default
database “DefaultDB” is assumed.

parameters Additional, optional parameters, which are delimited by the & (ampersand) character.
• table=table – specifies a specific SQL table name. The table name must exist in DDFs

for the database.
• dbfile=file – name of a file whose location is relative to the data file location entry in

DBNAMES.CFG for the current database. Since a relative location is specified, the use
of drive letters, full or UNC paths is not permitted. The database engine resolves the
full file name. The Pervasive PSQL client does not manipulate file in any manner.
Embedded spaces are permitted and are escaped by the database engine.

• file=file – specifies a specific data file name. The Pervasive PSQL client normalizes file
and replaces the input name with the resultant fully qualified UNC name in the URI
before sending the request to the database engine. Drive letters may be used and, if
present, are interpreted as client-side drives. Using a UNC path is also permitted, as
are embedded spaces.

• pwd=password – clear text password. The Pervasive PSQL client changes clear text
passwords into encrypted passwords before transmission.

• prompt=[yes | no] – tells the Pervasive PSQL client how the application wants to
handle the login dialog box pop-up when the database engine returns status 170 (Login
failed due to missing or invalid user name) or 171 (Login failed because of invalid
password). If prompt=yes is specified, the requester always displays the login dialog
even if the Prompt for Client Credentials setting is Off. If prompt=no is specified, the
requester assumes that the application wants to receive the status 170/171 directly and
does not want the requester to display the dialog. This is useful if you want your
applications to handle the prompting for credentials in response to any 170 or 171
status codes. Values other than “yes” or “no” are ignored and the requester displays
the login dialog based on the Prompt for Client Credentials setting. This option is
ignored on Linux machines that are acting in the role of a client.

Table 8 Elements of a Database URI continued

Element Definition
55

Transactional Interface Fundamentals
Precedence Examples

Special
Characters

As with any URI, certain non-alphanumeric characters have special
significance in the URI syntax. If you wish to use one of these
characters within one of the elements in the URI, you must use an
escape sequence to identify the character as actual text rather than a
special character. An escape sequence is simply another special
character or character combination that represents the plain text
equivalent of a special character.

The table below shows the special characters supported by the
transactional interface URI syntax, and their associated escape
sequences (represented by the percent sign and the hexadecimal
value for the specified character).

Initial URI String Parsed URI String

btrv://?file=MyFile.btr&table=MyTable&dbfile=DataFile.btr btrv://?file=MyFile.btr

btrv://?table=MyTable&dbfile=DataFile.btr btrv://?table=MyTable

btrv://?dbfile=DataFile.btr&file=MyFile.btr btrv://?file=MyFile.btr

btrv://?dbfile=DataFile.btr btrv://?dbfile=DataFile.btr

btrv://?file=FileOne&file=FileTwo btrv://?file=FileTwo

btrv://?table=TableOne&table=TableTwo&file=MyFile.btr btrv://?file=MyFile.btr

Table 9 Special Characters in a Database URI

Character Meaning Hexadecimal Value

/ Separates directories and subdirectories %2F

? Separates the base URI from its
associated parameters

%3F

% Specifies a special character %25

Indicates a bookmark or anchor %23

& Separates the parameters in the URI %26

" " Indicates the entire content enclosed by
the double quotes

%22

= Separates a parameter and its value %3D
56

Database URIs
Although the space character is reserved in the URI specification, it
can be used without quotes and without escape sequencing because
it is not used as a delimiter. The other symbols in the table above are
used as delimiters and therefore must be escaped.

Examples
This section shows examples of URIs using escape sequences to
identify special characters used within the field values.

Remarks Note that an empty user name or password is different than no user
name or password. For example, btrv://@host/ has an empty user
name, while btrv://host/ has no user name, and btrv://
foo@host/?pwd= has a user name of “foo” with an empty password.

Some URIs allow the use of user:password syntax. However, the
password is then transmitted as clear text. To prevent the
transmission of the password as clear text, the Pervasive PSQL
database URI ignores the password if one is provided using the
user:password syntax. Use the pwd= parameter to provide a
password, which the Pervasive PSQL client changes into an
encrypted password before transmission.

space No special meaning, but is reserved. %20

: Separates host from port (reserved, but not
currently supported). The colon is also
used in some IPv6 addresses. See IPv6.

%3A

Table 9 Special Characters in a Database URI

Character Meaning Hexadecimal Value

Table 10 URI Examples with Escape Sequences

URI Meaning

btrv://Bob@myhost/demodata?pwd= This%20Is%20Bob User “Bob” with password “This Is Bob.”

btrv://Bob@myhost/demodata?pwd= This Is Bob User “Bob” with password “This Is Bob.”

btrv://myhost/mydb?file=c:/program%20files/pvsw/mydb/c.mkd The %20 represents a space character.
File to be opened is “C:\Program
Files\pvsw\mydb\ c.mkd”

btrv://Bob@myhost/demodata?pwd= mypass%20Is%20%26%3f User Bob with password “mypass Is &?”
57

Transactional Interface Fundamentals
Some URIs allow for server based naming authority with a syntax of
user@host:port. The Pervasive PSQL database URI does support
specifying a port element.

Examples A URL (or "Uniform Resource Locator") is simply the address of a
file or resource on the Internet. The database URI uses the same
notion to address a database on a server. This section gives examples
of the syntax and semantics of URIs for Pervasive PSQL databases,
particularly using the transactional interface access.

Table 11 Examples of the transactional interface URIs

Example Meaning

btrv://myhost/demodata Database “demodata” on server “myhost.” The server operating
system can be any of the ones supported by Pervasive PSQL

btrv:///demodata Database “demodata” on the local machine. The local machine is
running a Windows operating system. The host element is
required for Linux operating systems (see the example above).

btrv://Bob@myhost/demodata User Bob without a password accessing database “demodata” on
server “myhost.”

btrv://Bob@myhost/mydb?pwd=a4 User Bob with password “a4” accessing database “mydb” on
server “myhost.”

btrv://myhost/demodata?table=class Unspecified user accessing database table named “class” in
database “demodata” on server “myhost.”

btrv://myhost/?table=class Unspecified user accessing database table named “class” in
default database (“DefaultDB”) on server “myhost.”

btrv://myhost/mydb?file=f:/mydb/a.mkd Unspecified user accessing the data file “f:/mydb/a.mkd” as seen
by the client using the security credentials of the database "mydb"
on server "myhost."

Note that the client normalizes drive “f:” which means that “f:”
must be mapped at the client to server "myhost."

btrv://mydb?file=c:/mydb/a.mkd Unspecified user accessing the data file “c:/mydb/a.mkd” under
database "mydb" on the local machine.

Drive “c:\” is a local drive on the local machine. The local machine
is running a Windows operating system.

btrv://myhost/demodata?dbfile=class.mkd Unspecified user accessing data file “class.mkd” within one of the
data directories defined for the “demodata” database on server
“myhost.” Because the file name is specified with dbfile= (and not
file=) the client requester does not normalize class.mkd. Only the
server engine normalizes class.mkd into a full path.
58

Database URIs
IPv6 The URI and UNC syntax does not allow certain special characters,
such as colons. Since raw IPv6 addresses use colons, different
methods of handling UNC paths and URI connections are available.
Pervasive PSQL supports IPv6-literal.net Names and Bracketed IPv6
Addresses.

See IPv6 in Getting Started With Pervasive PSQL.
59

Transactional Interface Fundamentals
Double-Byte Character Support
Pervasive PSQL accepts Shift-JIS (Japanese Industrial Standard)
encoded double-byte characters in file paths. (Shift-JIS is an
encoding technique commonly used for Japanese computers.) In
addition, you can store Shift-JIS double-byte characters in records
and sort them using the Japanese ISR table described in International
Sort Rules. Other multi-byte characters can be stored in records,
although ISR tables are currently not available to sort these records
according to culturally correct rules. Your use of double-byte
characters does not affect the operation of Pervasive PSQL
applications.
60

Record Length
Record Length
All records contain the record length, a fixed-length portion which
must be large enough to contain all the data (including keys) for a
record, plus the overhead required to store a record on a data page.

See Record Overhead in Bytes Without Record Compression and
Record Overhead in Bytes With Record Compression for how many
bytes of overhead you must add to the logical record length to obtain
a physical record length.

The following table lists the maximum record size for fixed length
records.

Note that the database engine turns on data compression for the file
if the file uses system data and the record length exceeds the limit
shown in the table above.

Optionally, the records in a file can contain a variable-length
portion. A variable-length record has a fixed-length portion that is
the same size in every record and a variable-length portion that can
be a different size in each record. When you create a file that uses
variable-length records, the fixed-length amount is the minimum
length of each record; you do not define the maximum record length.

Theoretically, the maximum length of variable-length records is
limited only by the transactional interface’s file size limit: 256 GB for
Pervasive PSQL version 9.5 (128 GB for earlier 9.x versions and 64
GB for other earlier versions). In reality, the maximum is limited by

Table 12 Maximum Record Size in Bytes for Fixed-length Records

File version Without System Data1 With System Data2

7.x 4,088 (4096 - 8) 4,080 (4088 - 8)

8.x 4,086 (4096 - 10) 4,078 (4086 - 8)

9.0 through 9.4 8,182 (8192 - 10) 8,174 (8182 - 8)

9.5 and later 16,372 (16384 - 12) 16,364 (16372 - 8)

1The page overhead and the record overhead are subtracted from the maximum
page size to determine the maximum record size. The per record overhead is 2
bytes for each file format.

2System data requires an additional overhead of 8 bytes.
61

Transactional Interface Fundamentals
such factors as the operating system and record access method you
choose. If you retrieve, update, or insert whole records, then the data
buffer length parameter, because it is a 16-bit unsigned integer, limits
the record length to 65,535.

A data buffer is a transactional interface function parameter that you
use to transfer various information depending on the operation
being performed. A data buffer can contain all or part of a record, a
file specification, and so forth. Refer to Table 15 in Chapter 5,
Designing a Database for more information on data buffers.

Note The total bytes of data plus internal header information
cannot exceed 64 KB (0x10000) bytes. The transactional
interface reserves 1,024 (0x400) bytes for internal purposes,
meaning you can have 64,512 (0xFC00) bytes of data.

If your file uses very large records, consider using variable-tail
allocation tables (VATs) in the file. A VAT, which is implemented as
a linked list, is an array of pointers to the variable-length portion of
the record. VATs accelerate random access to portions of very large
records. Some examples of very large records are binary large objects
(BLOBs) and graphics.

For files that contain very large variable-length records, the
transactional interface splits the record over many variable pages and
connects the pages using a linked list called a variable tail. If an
application uses chunk operations to access a part of a record and
that part of the record begins at an offset well beyond the beginning
of the record itself, the transactional interface may spend
considerable time reading the variable-tail linked list to seek that
offset. To limit such seek time, you can specify that the file use VATs.
the transactional interface stores the VAT on variable pages. In a file
containing a VAT, each record that has a variable-length portion has
its own VAT.

The transactional interface uses VATs not only to accelerate random
access, but also to limit the size of the compression buffer used
during data compression. If your files use data compression, you
may want to use VATs in the file.
62

Data Integrity
Data Integrity
The following features support concurrent access while ensuring the
integrity of your files in a multi-user environment:

Record Locks

Transactions

Transaction Durability

System Data

Shadow Paging

Backing Up Your Files

Record Locks Applications can explicitly lock either one record at a time (single
record lock) or multiple records at once (multiple record lock).
When an application specifies a record lock, the application can also
apply a wait or no-wait condition. When an application requests a
no-wait lock on a record that is currently unavailable (either the
record is already locked by another application or the whole file is
locked by an exclusive transaction), the transactional interface does
not grant the lock.

When an application requests a wait lock on a record that is
unavailable, the transactional interface checks for a deadlock
condition. You can configure the transactional interface to wait
before returning a deadlock detection status code. Doing so
improves performance in multi-user situations by allowing the
transactional interface to wait internally, rather than forcing the
application to retry the operation.

Transactions If you have a number of modifications to make to a file and you must
be sure that either all or none of those modifications are made,
include the operations for making those modifications in a
transaction. By defining explicit transactions, you can force the
transactional interface to treat multiple operations as an atomic unit.
Other users cannot see the changes made to a file until the
transaction ends. The transactional interface supports two types of
transactions: exclusive and concurrent.
63

Transactional Interface Fundamentals
Exclusive Transactions
In an exclusive transaction, the transactional interface locks the
entire data file when you insert, update, or delete a record in that file.
Other applications (or other instances of the same application) can
open the file and read its records, but they cannot modify the file.
The file remains locked until the application ends or aborts the
transaction.

Concurrent Transactions
In a concurrent transaction, the transactional interface can lock
either records or pages in the file, depending on the operation you
are performing. The transactional interface enables multiple
applications (or multiple instances of the same application) to
perform modifications inside concurrent transactions in different
parts of the same file simultaneously, as long as those modifications
do not affect other previously locked portions of the file. The record
or page remains locked until the application ends or aborts the
transaction. Concurrent transactions are available only for 6.0 and
later files.

Exclusive vs. Concurrent
Clients can still read records from a file even if a concurrent
transaction has locked the requested record. However, these clients
cannot be operating from within an exclusive transaction. Also, they
cannot apply a lock bias to their read operation if the file containing
the requested record is currently locked by an exclusive transaction,
or if a concurrent transaction has locked the requested record.

When a client reads a record using an exclusive lock, the
transactional interface locks only the individual record; the rest of
the page on which the record resides remains unlocked.

Note Simply opening a file from within a transaction does not
lock any records, pages, or files. In addition, the transactional
interface does not lock files that you flag as read-only or files that
you open in read-only mode.

When you use exclusive transactions, the transactional database
engine causes other clients to implicitly wait on the locked file unless
64

Data Integrity
the No Wait bias is added to the Begin Transaction (19 or 1019)
operation. The application seems to hang during this implicit wait
state. If these exclusive transactions are short lived, you may not
notice the wait time. However, the overall effect of many clients
involved in implicit waits results in using a large amount of CPU
time. Additionally, multiple position blocks in the same file share
locks.

Exclusive transactions involved in implicit waits also waste network
bandwidth. The transactional database engine waits about one
second before returning to the requester. The requester recognizes a
wait condition and returns the operation to the transactional
database engine. Thus, exclusive transactions also can cause extra
network traffic.

The amount of extra CPU cycles and network traffic increase
exponentially with the number of clients waiting on the locked file
combined with the length of time involved in the exclusive
transaction.

Transaction
Durability

You can configure the transactional interface to guarantee
Transaction Durability (page 4-65) and atomicity by logging all
operations to a single transaction log. Transaction durability is the
assurance that the transactional database engine finishes writing to
the log when a client issues the End Transaction operation and before
the transactional database engine returns a successful status code to
the client. Atomicity ensures that if a given statement does not
execute to completion, then the statement does not leave partial or
ambiguous effects in the database, thereby ensuring the integrity of
your database by keeping it in a stable state.

If you want atomicity without the overhead of Transaction
Durability, you can use Transaction Logging feature in Pervasive
PSQL V8 and later releases. See Advanced Operations Guide for more
information on Transaction Logging.

By default, the transaction log is in the \MKDE\LOG subdirectory of
the default Windows system directory. The log must exist on the
same machine as the transactional database engine. You can change
the location using the transaction log directory configuration
option.

The transactional database engine maintains the transaction log in
one or more physical files, called log segments. The transactional
65

Transactional Interface Fundamentals
interface starts a new log segment when the current log segment
reaches a user-defined size limit, no files have pending changes, and
the transactional database engine has finished a system transaction.

All transaction log segments have a.LOG extension. The
transactional database engine names log segments with consecutive,
8-character hexadecimal names, such as 00000001.LOG,
00000002.LOG, and so on.

To improve performance on specific files, you can open a file in
Accelerated mode. (Version 6.x transactional database engine
accepted Accelerated open requests, but interpreted them as Normal
open requests.) When you open a file in Accelerated mode, the
transactional database engine does not perform transaction logging
on the file.

Note If a system failure occurs, there will be some log segments
that are not deleted. These segments contain changes that did
not get fully written to the data files. Do not delete these log
segments. You do not know which files are represented in these
log segments. No action is necessary because those data files will
automatically get rolled forward the next time they are opened.

System Data Pervasive PSQL uses a 7.x transaction log file format. In order for the
transactional interface to log transactions on a file, the file must
contain a log key, which is a unique (non-duplicatable) key that the
transactional interface can use to track the record in the log. For files
that have at least one unique (non-duplicatable) key, the
transactional interface uses one of the unique keys already defined in
the file.

For files that do not have any unique keys, the transactional interface
can include system data upon file creation. The transactional
interface includes system data in a file only if the file uses the 7.x file
format or later and if at the time the file is created, the transactional
interface is configured to include system data in files upon creation.
System data is defined as an 8-byte binary value with the key number
125. Even if a file has a unique, user-defined key, you may want to use
system data (also called the system-defined log key), to protect
against a user dropping an index.
66

Data Integrity
The database engine turns on data compression for the file if the file
uses system data and the record length exceeds the limit shown in
Table 12.

The transactional interface adds system data only at file creation. If
you have existing files for which you want to add system data, turn
on the System Data configuration option, then use the Rebuild
utility.

Note When the transactional interface adds system data, the
resulting records may be too large to fit in the file’s existing page
size. In such cases, the transactional interface automatically
increases the file’s page size to the next accommodating size.
67

Transactional Interface Fundamentals
Shadow Paging The transactional database engine uses shadow paging to protect 6.0
and later files from corruption in case of a system failure. When a
client needs to change a page (either inside or outside a transaction),
the transactional database engine selects a free, unused physical
location in the data file itself and writes a new page image, called a
shadow page, to this new location. During a single transactional
interface operation, the transactional database engine might create
several shadow pages all the same size as the original logical pages.

When the changes are committed (either when the operation is
complete or the transaction ends), the transactional database engine
makes the shadow pages current, and the original pages become
available for reuse. The transactional database engine stores a map,
which is the Page Allocation Table, in the file to keep track of the
valid and reusable pages. If a system failure occurs before the changes
are committed, the transactional interface does not update the PAT,
thereby dropping the shadow pages and reverting to using the
current pages, which are still in their original condition.

Note This description simplifies the shadow paging process. For
improved performance, the transactional database engine does
not commit each operation or user transaction individually, but
groups them in a bundle called a system transaction.

When a client operates inside a transaction, the shadow pages
corresponding to the original logical pages are visible only to that
client. If other clients need to access the same logical pages, they see
the original (unchanged) pages—that is, they do not see the first
client’s uncommitted changes. Shadow paging thus enhances
reliability because the original file is always valid and internally
consistent.

Note Pre-6.0 the transactional interface versions used pre-
imaging to protect files from corruption in case of a system
failure. Pervasive.SQL 7.0 also uses pre-imaging to protect pre-
6.0 files. Before updating a pre-6.0 file, the transactional
interface creates a temporary pre-image file, which contains the
68

Data Integrity
pages to be updated from the original file. The transactional
interface then performs the update on the original file. If a
system failure occurs during the update, the transactional
interface can restore the original file using the pre-image file.

Backing Up
Your Files

Backing up your files regularly is an important step in protecting
your data.

For information on backing up your files, please see the following
topic in Advanced Operations Guide: Logging, Backup, and Restore.
69

Transactional Interface Fundamentals
Event Logging
Event logging is a feature in Pervasive PSQL that uses a log file to
store informational, warning, and error messages from Pervasive’s
transactional interface, SQL interface, and utility components.

See Pervasive PSQL Message Logging in Pervasive PSQL User's Guide
for details.
70

Performance Enhancement
Performance Enhancement
The transactional interface provides the following features for
enhancing performance:

System Transactions

Memory Management

Page Preallocation

Extended Operations

System
Transactions

To gain better performance and to aid data recovery, the
transactional interface includes one or more committed operations
(both transactional and non-transactional) into a bundle of
operations called a system transaction. The transactional database
engine creates a system transaction bundle for each file. A system
transaction can contain operations and user transactions from one
or more clients running on the same engine.

Note Do not confuse system transactions with exclusive or
concurrent transactions. Throughout this manual, the term
transaction refers to an exclusive or concurrent transaction (also
known as a user transaction). User transactions affect how
changes become incorporated into the pages in cache, while
system transactions affect how dirty pages in cache become a
part of the files on disk. The transactional database engine
controls the initiation and process of system transactions.

Both user transactions and system transactions are atomic. In other
words, they happen in such a way that either all or none of the
changes occur. If a system failure occurs, the transactional database
engine recovers all files involved in the failed system transaction as it
reopens the files. All changes made during a failed system transaction
(that is, all operations to a file by all clients on that engine since the
last completed system transaction) are lost; however, the file is
restored to a consistent state, enabling the operations to be
attempted again after resolving the cause of the system failure.

Pervasive PSQL guarantees transaction durability for all loggable files
except those opened in Accelerated mode. (A file can be logged if it
contains at least one unique, or non-duplicatable, key. The key can
71

Transactional Interface Fundamentals
be system-defined.) Transaction durability is the assurance that
before the transactional database engine returns a successful status
code to the client for an End Transaction it finishes writing to the
transaction log. When you open a file in Accelerated mode, the
transactional interface does not log the file; therefore, the
transactional database engine does not log entries to the file.
Therefore, the transactional database engine cannot guarantee
transaction durability for that file.

After the transactional database engine rolls back a file’s system
transaction, it replays the log when it next opens the file. Doing so
restores those committed operations that were stored in the log but
were not written to the file because of the system transaction
rollback.

Each system transaction consists of two phases: preparation and
writing.

Preparation Phase
During the preparation phase, the transactional database engine
executes all operations in the current system transaction, but writes
no pages to the files. The transactional database engine reads
uncached pages from the files as needed and creates new page images
only in cache.

Any of the following actions can trigger the end of the preparation
phase, which marks the beginning of the writing phase:

The transactional database engine reaches the Operation Bundle
Limit.

The transactional database engine reaches the Initiation Time
Limit.

The ratio of pages prepared for writing to the total number of
cache pages reaches a system threshold.

Note Generally, the preparation phase ends after a completed
transactional interface operation. However, it is possible that the
time limit or the cache threshold could be reached during an
incomplete user transaction; the transactional interface switches
to the writing phase, regardless.
72

Performance Enhancement
Writing Phase
During the writing phase, the transactional database engine writes to
disk all pages prepared in the preparation phase. It first writes all
data, index, and variable pages. These are actually shadow pages.
While these are being written, the consistency of the files on disk
remains the same.

However, the critical part of the system transaction occurs while the
PAT pages are being written, because they point to the shadow page
as the current page. To protect this phase, the transactional database
engine writes a flag in the FCR. When all PAT pages are written, the
final FCR is written and the file is now consistent. If a system failure
happens during this phase, the transactional database engine
recognizes it the next time the file is opened and rolls the file back to
the previous state. Then, all durable user transactions in the
transaction log file will be implemented in the file.

Frequency of System Transactions

Less Frequent

Doing system transactions less often provides a performance benefit
to most configurations. These include client/server, single engine
workstation and multi-engine workstation environments where files
are opened exclusively.

When the transactional database engine initiates system transactions
less often, dirty pages, or pages that need to be written, stay in
memory longer. If the application is doing a lot of change operations,
these pages might get updated multiple times before being written to
disk. This means fewer disk writes. In fact, the most efficient engine
is one that writes only when it must.

There are three limits that, when reached, can cause the system
transactions to be initiated: Operation Bundle Limit, Cache Size, and
Initiation Time Limit. When any of these limits are reached, the
transactional database engine initiates a system transaction. See
Advanced Operations Guide for more information about these
settings.

The best way to do system transactions less often is to set the
Operation Bundle Limit and Initiation Time Limit to higher values.
You can also increase the size of the cache.
73

Transactional Interface Fundamentals
More Frequent

A disadvantage of causing the transactional database engine to
perform fewer system transactions is more data in the machine’s
memory at any point in time that needs to be written to disk. If a
system failure occurs, such as a power outage, more data is lost.
Although the transactional database engine is designed to keep files
in a consistent usable state, that state may not include the most
recent changes. Of course, the use of user transactions with
transaction durability will minimize this risk. You should carefully
consider the risks of decreasing the frequency of system transactions
versus the performance gains.

For example, if your application is using a workstation engine to
update a remote file over a slow or non-reliable network connection,
you should perform system transactions often so that changes are
put onto disk at soon as possible.

Memory
Management

The cache is an area of memory the transactional database engine
reserves for buffering the pages that it reads. When an application
requests a record, the transactional database engine first checks the
cache to see if the page containing that record is already in memory.
If so, the transactional database engine transfers the record from the
cache to the application’s data buffer. If the page is not in the cache,
the transactional database engine reads the page from the disk into a
cache buffer before transferring the requested record to the
application. The transactional database engine cache is shared by
local clients and used across multiple operations.

If every cache buffer is full when the transactional database engine
attempts to transfer a new page into memory, a least-recently-used
(LRU) algorithm determines which page in the cache the
transactional interface overwrites. The LRU algorithm reduces
processing time by keeping the most recently referenced pages in
memory.

When the application inserts or updates a record, the transactional
database engine first makes a shadow image of the corresponding
page, modifies the page in the cache, and then writes that page to
disk. The modified page remains in the cache until the LRU
algorithm determines that the transactional database engine can
overwrite the image of that page in cache with a new page.

Generally, a larger cache improves performance because it enables
more pages to be in memory at a given time. The transactional
74

Performance Enhancement
database engine enables you to specify the amount of memory to
reserve for the I/O cache buffers. To determine this amount, consider
the application’s memory requirements, the total memory installed
on your computer, and the combined size of all files that all
concurrent Pervasive PSQL applications will access. The
configuration setting for this cache is “Cache Allocation Size.”

In Pervasive PSQL V8 and later releases, a secondary dynamic L2
cache is also available. The configuration setting for this dynamic
cache is “Max transactional database engine Memory Usage.” See
Advanced Operations Guide for more information on configuring
these settings.

Note Increasing cache above the available physical memory can
actually cause a significant performance decrease because part of
the cache memory in virtual memory will be swapped out onto
disk. It is recommended that you set the transactional database
engine cache to about 60 percent of available physical memory
after the operating system is loaded.

To find this value on Windows NT, for example, right click on
the clock in the taskbar and select Task Manager. Select the
Performance tab to see the available physical memory near the
bottom right of the dialog box.

Page
Preallocation

Page pre allocation guarantees that disk space is available when the
transactional database engine needs it. You can enhance the speed of
file operations if a data file occupies a contiguous area on the disk.
The increase in speed is most noticeable on very large files. For more
information about this feature, refer to Page Preallocation.

Extended
Operations

Using the extended operations—Get Next Extended (36), Get
Previous Extended (37), Step Next Extended (38), Step Previous
Extended (39), and Insert Extended (40)—can greatly improve
performance. Extended operations can reduce the number of
transactional interface requests by 100 to 1 or more, depending on
the application. These operations have the ability to filter the records
returned so that records not needed by the application are not sent
to it. This optimization technique has the best results in client/server
environments that have to send data back and forth over a network.
75

Transactional Interface Fundamentals
See Multi-Record Operations for detailed information on these
operations.
76

Disk Usage
Disk Usage
The transactional database engine provides the following features for
minimizing disk usage requirements:

Free Space List

Index Balancing

Data Compression

Blank Truncation

Free Space List When you delete a record, the disk space it formerly occupied is put
on a Free Space List. When you insert new records, the transactional
interface uses pages on the Free Space List before creating new
variable pages. The Free Space Threshold tells the transactional
interface how much free space must remain on a variable page in
order for that page to appear on the Free Space List.

This method of reusing free space eliminates the need to reorganize
files to reclaim disk space. Also, the Free Space List provides a means
of reducing the fragmentation of variable-length records across
several pages. A higher Free Space Threshold reduces fragmentation
at the cost of requiring more disk space for the file.

Index
Balancing

When an index page becomes full, the transactional database engine
(by default) automatically creates a new index page and moves some
of the values from the full index page to the new index page. Turning
on the Index Balancing option lets you avoid creating a new index
page every time an existing one becomes full. With index balancing,
the transactional database engine looks for available space in sibling
index pages each time an index page becomes full. The transactional
database engine then rotates values from the full index page onto the
pages that have space available.

Index balancing increases index page utilization, results in fewer
pages, and produces an even distribution of keys among nodes on
the same level, thus enhancing performance during read operations.
However, using this feature also means that the transactional
database engine requires extra time to examine more index pages
and may require more disk I/O during write operations. Although
the exact effects of balancing indexes vary in different situations,
performance on write operations typically degrades by about 5 to 10
percent if you use index balancing.
77

Transactional Interface Fundamentals
Index Balancing impacts the performance of a “steady-state” file by
making the average change operation a little slower while making the
average get operation faster. It does this by fitting more keys in an
average index page. A normal index page may be 50 to 65 percent full
where an index balanced page is 65 to 75 percent full. This means
there are less index pages to search.

If you create indexes with Create Index (31), the index pages will be
nearly 100 percent full, which optimizes these files for reading not
writing.

Note You can also specify index balancing on a file-by-file basis
by setting the Index Balanced File bit in the File Flag field in the
file.

If you enable the Index Balancing option, the transactional
interface performs index balancing on every file, regardless of
the balanced file flag specification that the application may have
set. For a description of how to specify the Index Balancing
configuration option, refer to the Pervasive PSQL User's Guide.

Data
Compression

With data compression, the transactional interface compresses the
file’s records before inserting or updating them and uncompresses
the records when it retrieves them. Because the final length of a
compressed record cannot be determined until the record is written
to the file, the transactional interface always designates a compressed
file as a variable-record-length file. However, if you use data
compression on a fixed-record-length file, the transactional interface
prevents insert and update operations from producing a record that
is longer than the fixed-record length specified for the data file.

Because the transactional interface stores compressed records as
variable-length (even if you created the file as not allowing variable-
length records), individual records may become fragmented across
several data pages if you perform frequent insertions, updates, and
deletions. This fragmentation can result in slower access times,
because the transactional interface may need to read multiple file
pages to retrieve a single record. However, data compression can also
result in a significant reduction of the disk space needed to store
records that contain many repeating characters. the transactional
78

Disk Usage
interface compresses five or more of the same contiguous characters
into 5 bytes.

For more information on this feature, see Record Compression.

Blank
Truncation

Blank truncation conserves disk space. It is applicable only to files
that allow variable-length records and that do not use data
compression. For more information on this feature, see Blank
Truncation.
79

Transactional Interface Fundamentals
80

c h a p t e r
5
Designing a Database
This chapter provides formulas and guidelines for designing your
database. This section discusses the following topics:

Understanding Data Files

Creating a Data File

Calculating the Logical Record Length

Choosing a Page Size

Estimating File Size

Optimizing Your Database

Setting Up Security
81

Designing a Database
Understanding Data Files
The transactional database engine stores information in data files.
Inside each data file is a collection of records and indexes. A record
contains bytes of data. That data might represent an employee’s
name, ID, address, phone number, rate of pay, and so on. An index
provides a mechanism for quickly finding a record containing a
specific value for a portion of the record.

The transactional database engine interprets a record only as a
collection of bytes. It does not recognize logically discrete pieces, or
fields, of information within a record. To the transactional database
engine, a last name, first name, employee ID, and so on do not exist
inside a record. The record is simply a collection of bytes.

Because it is byte-oriented, the transactional database engine
performs no translation, type verification, or validation of the data
in a record—even on keys (for which you declare a data type). The
application interfacing with the data file must handle all information
about the format and type of the data in that file. For example, an
application might use a data structure based on the following
format:

Inside the file, an employee’s record is stored as a collection of bytes.
The following diagram shows the data for the record for Cliff Jones,
as it is stored in the file. (This diagram replaces ASCII values in
strings with the appropriate letter or number. Integers and other
numeric values are unchanged from their normal hexadecimal
representation.)

Information in Record Length (in Bytes) Data Type

Last name 25 Null-terminated string

First name 25 Null-terminated string

Middle initial 1 Char (byte)

Employee ID 4 Long (4-byte integer)

Phone number 13 Null-terminated string

Pay rate per month 4 Float

Total Record Length 72 bytes
82

Understanding Data Files
The only discrete portions of information that the transactional
database engine recognizes in a file are keys. An application (or user)
can designate one or more collection of bytes in a record as a key, but
the bytes must be contiguous inside each key segment.

The transactional database engine sorts records on the basis of the
values in any specified key, providing direct access to return the data
in a particular order. The transactional database engine can also find
a particular record based on a specified key value. In the preceding
example, the 25 bytes that contain a last name in each record might
be designated as a key in the file. An application could use the last
name key to obtain a listing of all the employees named Smith, or it
could obtain a listing of all employees and then display that listing,
sorted by last name.

Keys also allow the transactional database engine to access
information quickly. For each key defined in a data file, the
transactional database engine builds an index. The index is stored
inside the data file itself and contains a collection of pointers to the

Byte Position 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Data Value J o n e s 00 ? ? ? ? ? ? ? ? ? ?

Byte Position 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

Data Value ? ? ? ? ? ? ? ? ? C l i f f 00 ?

Byte Position 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

Data Value ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Byte Position 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

Data Value ? ? D 2 3 4 1 5 1 2 5 5 5 1 2 1

Byte Position 40 41 42 43 44 45 46 47

Data Value 2 ? ? ? 3 5 0 0
83

Designing a Database
actual data within that file. A key value is associated with each
pointer.

In the preceding example, the index for the Last Name key sorts the
Last Name values and has a pointer indicating where the record is
located in the data file:

Normally, when accessing or sorting information for an application,
the transactional database engine does not search through all the
data in its data file. Instead, it goes to the index, performs the search,
and then manipulates only those records that meet the application’s
request.

Anderson Gayle P10927365751255516550
Nemet Judit L12345678901234567890
Quaglino Andy X98765432109876543210
Harris Ron Q65748392019283764650
Boerner Clarissa L82937465637298173640
Woodward Nancy B92736464838161537480
Bowling Mark G92736465483892917370

Anderson
Boerner
Bowling
Harris
Nemet
Quaglino
Woodward

Index Records
84

Creating a Data File
Creating a Data File
The transactional interface gives developers tremendous flexibility in
optimizing database applications. In providing such flexibility, the
transactional interface exposes a great deal of the inner workings of
the transactional database engine. If you are new to the transactional
interface, the Create (14) operation may appear quite complex to
you, but you do not need all of the features this operation provides
to get started. This section highlights the basic requirements by
stepping you through the creation of a simple, transaction-based
data file. For simplification where necessary, this section uses C
interface terminology.

Note In the same directory, no two files should share the same
file name and differ only in their file name extension. For
example, do not name a data file Invoice.btr and another one
Invoice.mkd in the same directory. This restriction applies
because the database engine uses the file name for various areas
of functionality while ignoring the file name extension. Since
only the file name is used to differentiate files, files that differ
only in their file name extension look identical to the database
engine.

Data Layout This section uses an example data file that stores employee records.
The application will retrieve employee information by providing
either a unique employee ID or the employee’s last name. Because
more than one employee can have the same last name, the database
85

Designing a Database
will allow duplicate values for the last name. Based on these criteria,
the data layout for the file is as follows:

Now that the basic data layout is established, you can begin applying
the terminology and requirements of the transactional interface.
This includes determining information about the key structure and
file structure before you actually create the file. You must work out
these details in advance, because the Create (14) operation creates
the file, index, and key information all at once. The following
sections discuss the issues to consider in working out these details.

Key Attributes
First, determine any special functionality for the keys. The
transactional database engine supports a variety of key attributes you
can assign, as shown in the following table.

Information in Record Data Type Key/Index Characteristics

Last name 25 character string Duplicatable

First name 25 character string None

Middle initial 1 character string None

Employee ID 4 byte integer Unique

Phone number 13 character string None

Pay rate per month 4 byte float None

Table 13 Key Attributes

Constant Description

EXTTYPE_KEY Extended Data Type. Stores a transactional interface
data type other than string or unsigned binary. Use this
attribute, rather than the standard binary data type. This
key attribute can accommodate the standard binary and
string data types, plus many others.

BIN Standard BINARY Data Type. Supported for historical
reasons. Stores an unsigned binary number. Default
data type is string.

DUP Linked Duplicates. Allows duplicate values, which are
linked by pointers from the index page to the data page.
For more information, refer to Duplicatable Keys.
86

Creating a Data File
You assign these key attributes for each key you define. Each key has
its own key specification. If the key has multiple segments, you have
to provide the specification for each segment. Some of these
attributes can have different values for different segments within the
same key. Using the previous example, the keys are the last name and

REPEAT_DUPS_KEY Repeating Duplicates. Allows duplicate values, which
are stored on both the index page and the data page. For
more information, refer to Duplicatable Keys.

MOD Modifiable. Allows the key value to be modified after the
record is inserted.

SEG Segmented. Specifies that this key has a segment that
follows the current key segment.

NUL Null Key (All Segments). Excludes any records from the
index if all segments of the key contain a specified null
value. (You assign the null value when you create the
file.)

MANUAL_KEY Null Key (Any Segment). Excludes any records from the
index if any segment in the key contains a specified null
value. (You assign the null value when you create the
file.)

DESC_KEY Descending Sort Order. Orders the key values in
descending order (highest to lowest). Default is
ascending order (lowest to highest).

NOCASE_KEY Case Insensitive. Sorts string values without
distinguishing upper and lower case letters. Do not use if
the key has an alternate collating sequence (ACS). In the
case of a Null Indicator segment, this attribute is
overloaded to indicate that non-zero null values should
be treated distinctly.

ALT Alternate Collating Sequence. Uses an ACS to sort
string keys differently from the standard ASCII collating
sequence. Different keys can use different ACSs. You
can specify the default ACS (the first one defined in the
file), a numbered ACS defined in the file, or a named
ACS defined in the COLLATE.CFG system file.

NUMBERED_ACS

NAMED_ACS

For simplicity, these constants, defined in btrconst.h, are consistent with the C
interface. Some interfaces may use other names or no constants at all. For bit
masks, hexadecimal, and decimal equivalents for the key attributes, refer to the
Btrieve API Guide.

Table 13 Key Attributes continued

Constant Description
87

Designing a Database
the employee ID. Both keys use extended types; the last name is a
string and the employee ID is an integer. Both are modifiable, but
only the last name is duplicatable. In addition, the last name is case
insensitive.

Regarding the data type you assign to a key, the transactional
interface does not validate that the records you input adhere to the
data types defined for the keys. For example, you could define a
TIMESTAMP key in a file, but store a character string there or define
a date key and store a value for February 30. Your transactional
interface application would work fine, but an ODBC application that
tries to access the same data might fail, because the byte format could
be different and the algorithms used to generate the timestamp value
could be different. For complete descriptions of the data types, refer
to the SQL Engine Reference.

File Attributes
Next, determine any special functionality for the file.

The transactional database engine supports a variety of file attributes
you can assign, as follows:

Table 14 File Attributes

Constant Description

VAR_RECS Variable Length Records. Use in files that
contain variable length records.

BLANK_TRUNC Blank Truncation. Conserves disk space by
dropping any trailing blanks in the variable-
length portion of the record. Applicable only to
files that allow variable-length records and that
do not use data compression. For more
information, refer to Blank Truncation.

PRE_ALLOC Page Preallocation. Reserves contiguous disk
space for use by the file as it is populated. Can
speed up file operations if a file occupies a
contiguous area on the disk. The increase in
speed is most noticeable on very large files.
For more information, refer to Page
Preallocation.
88

Creating a Data File
DATA_COMP Data Compression. Compresses records
before inserting or updating them and
uncompresses records when retrieving them.
For more information, refer to Record
Compression.

KEY_ONLY Key-Only File. Includes only one key, and the
entire record is stored with the key, so no data
pages are required. Key-only files are useful
when your records contain a single key and
that key takes up most of each record. For
more information, refer to Key-Only Files.

BALANCED_KEYS Index Balancing. Rotates values from full index
pages onto index pages that have space
available. Index balancing enhances
performance during read operations, but may
require extra time during write operations. For
more information, refer to Index Balancing.

FREE_10
FREE_20
FREE_30

Free Space Threshold. Sets the threshold
percentage for reusing disk space made
available by deletions of variable length
records, thus eliminating the need to
reorganize files and reducing the
fragmentation of variable-length records
across several pages.

A larger Free Space Threshold reduces
fragmentation of the variable-length portion of
records which increases performance.
However, it requires more disk space. If higher
performance is desired, increase the Free
Space Threshold to 30 percent.

DUP_PTRS Reserve Duplicate Pointers. Preallocates
pointer space for linked duplicatable keys
added in the future. If no duplicate pointers are
available for creating a linked-duplicatable key,
the transactional database engine creates a
repeating-duplicatable key.

INCLUDE_SYSTEM_DATA System Data. Includes system data upon file
creation, which allows the transactional
database engine to perform transaction
logging on the file. This is useful in files that do
not contain a unique key.

NO_INCLUDE_SYSTEM_DAT
A

Table 14 File Attributes continued

Constant Description
89

Designing a Database
The example data file does not use any of these file attributes,
because the records are fixed-length records of small size.

For definitions of file attributes, refer to File Types. For more
information about specifying file attributes during the Create
operation, refer to the Btrieve API Guide.

SPECIFY_KEY_NUMS Key Number. Allows you to assign a specific
number to a key, rather than letting the
transactional database engine assign numbers
automatically. Some applications may require
a specific key number.

VATS_SUPPORT Variable-tail Allocation Tables (VATs). Uses
VATs (arrays of pointers to the variable-length
portion of the record) to accelerate random
access and to limit the size of the compression
buffer used during data compression. For more
information, refer to Variable-tail Allocation
Tables.

For simplicity, these constants, defined in btrconst.h, are consistent with the C
interface. Some interfaces may use other names or no constants at all. For bit
masks, hexadecimal, and decimal equivalents for the file attributes, refer to the
Btrieve API Guide.

Table 14 File Attributes continued

Constant Description
90

Creating a Data File
Creating File
and Key
Specification
Structures

When you use the Create operation, you pass in a data buffer that
contains file and key specification structures. The following
structure uses the example employee data file.

Table 15 Sample Data Buffer for File and Key Specifications

Description Data Type1 Byte # Example Value2

File Specification

Logical Fixed Record Length. (Size of all fields
combined: 25 + 25 + 1 + 4 + 13 + 4). For instructions,
refer to Calculating the Logical Record Length.3

Short Int4 0, 1 72

Page Size. File Format Short Int 2, 3

6.0-9.0 512

6.0 and later 1,024

6.0-9.0 1,536

6.0 and later 2,048

6.0-9.0 3,072

3,584

6.0 and later 4,096

9.0 and later 8,192

9.5 and later 16,384

A minimum size of 4096 bytes works best for most files. If you want to fine-tune this, refer
to Choosing a Page Size for more information.

6.0 to 8.0 file formats support page sizes of 512 times x, where x is any number up to
the product 4,096.

9.0 file format supports page sizes identical to previous versions except that it also
supports a page size of 8,192.

9.5 file format supports page sizes of 1,024 times 2 0 thru 4.

When creating 9.5 format files, if the logical page size specified is valid for the file format,
the MicroKernel rounds the specified value to the next higher valid value if one exists.
For all other values and file formats, the operation fails with status 24. No rounding is
done for the older file formats.

Number of Keys. (Number of keys in the file: 2) Byte 4 2
91

Designing a Database
File Version Byte 5 0x60 Version 6.0

0x70 Version 7.0

0x80 Version 8.0

0x90 Version 9.0

0x95 Version 9.5

0x00 Use database
engine default

Reserved. (Not used during a Create operation.) Reserved 6- 9 0

File Flags. Specifies the file attributes. The example
file does not use any.

Short Int 10, 11 0

Number of Extra Pointers. Sets the number of
duplicate pointers to reserve for future key additions.
Used if the file attributes specify Reserve Duplicate
Pointers.

Byte 12 0

Reserved. (Not used during a Create operation.) Reserved 13 0

Preallocated Pages. Sets the number of pages to
preallocate. Used if the file attributes specify Page
Preallocation.

Short Int 14, 15 0

Key Specification for Key 0 (Last Name)

Key Position. Provides the position of the first byte of
the key within the record. The first byte in the record is
1.

Short Int 16, 17 1

Key Length. Specifies the length of the key, in bytes. Short Int 18, 19 25

Key Flags. Specifies the key attributes. Short Int 20, 21 EXTTYPE_KEY +
NOCASE_KEY + DUP +
MOD

Not Used for a Create. Byte 22-25 0

Extended Key Type. Used if the key flags specify Use
Extended Key Type. Specifies one of the extended
data types.

Byte 26 ZSTRING

Table 15 Sample Data Buffer for File and Key Specifications continued

Description Data Type1 Byte # Example Value2
92

Creating a Data File
Null Value (legacy nulls only). Used if the key flags
specify Null Key (All Segments) or Null Key (Any
Segment). Specifies an exclusion value for the key.
See Null Value for more conceptual information on
legacy nulls and true nulls.

Byte 27 0

Not Used for a Create. Byte 28, 29 0

Manually Assigned Key Number. Used if the file
attributes specify Key Number. Assigns a key number.

Byte 30 0

ACS Number. Used if the key flags specify Use Default
ACS, Use Numbered ACS in File, or Use Named ACS.
Specifies the ACS number to use.

Byte 31 0

Key Specification for Key 1 (Employee ID)

Key Position. (Employee ID starts at first byte after
Middle Initial.)

Short Int 32, 33 52

Key Length. Short Int 34, 35 4

Key Flags. Short Int 36, 37 EXTTYPE_KEY + MOD

Not Used for a Create. Byte 38-41 0

Extended Key Type. Byte 42 INTEGER

Null Value. Byte 43 0

Not Used for a Create. Byte 44, 45 0

Manually Assigned Key Number. Byte 46 0

ACS Number. Byte 47 0

Key Specification for Page Compression

Table 15 Sample Data Buffer for File and Key Specifications continued

Description Data Type1 Byte # Example Value2
93

Designing a Database
Creating a File
with Page Level
Compression

For Pervasive PSQL 9.5 and later, you can use the Create operation
to create data files with page level compression. For earlier data files,
logical pages map to physical pages, and this mapping is stored in a
Page Allocation Table (PAT). A physical page is exactly the same size
as a logical page.

When a file is compressed, each logical page is compressed into one
or more physical page units that are smaller in size than a logical
page. The physical page size is specified by the Physical Page Size
attribute (see Table 15).

The Page Compression file flag (see Table 6) is used in conjunction
with the Physical Page Size key specification to tell the MicroKernel
to create the new data file with page level compression turned on.
The logical and physical page sizes are validated as follows:

The value specified for the physical page size cannot be larger than
the value specified for the logical page size. If it is then the
MicroKernel will round down the value specified for the physical
page size so that it is the same as the logical page size. The logical page
size needs to be an exact multiple of the physical page size. If it is not
then the logical page size is rounded down so that it becomes an
exact multiple of the physical page size. If, as a result of these
manipulations, the logical and physical values end up to be the same,
then page level compression will not turned on for this file.

Physical Page Size5 Char A 512
(default value)

1Unless specified otherwise, all data types are unsigned.

2For simplification, the non-numeric example values are for C applications.

3For files with variable-length records, the logical record length refers only to the fixed-length portion of the
record.

4Short Integers (Short Int) must be stored in the “Little Endian” byte order, which is the Low To High ordering
of Intel-class computers.

5Only used with page level compression. Must be used in conjunction with the Page Compression file flag (see
Table 6). See also Creating a File with Page Level Compression for more information.

Table 15 Sample Data Buffer for File and Key Specifications continued

Description Data Type1 Byte # Example Value2
94

Creating a Data File
Calling the
Create
Operation

The Create operation (14) requires the following values:

Operation Code, which is 14 for a Create.

Data Buffer containing the file and key specifications.

Length of the Data Buffer.

Key Buffer containing the full path for the file.

Key Number containing a value to determine whether the
transactional database engine warns you if a file of the same
name already exists (-1 = warning, 0 = no warning).

In C, the API call would be as follows:

Create Operation

/* define the data buffer structures */
typedef struct
{
 BTI_SINT recLength;
 BTI_SINT pageSize;
 BTI_SINT indexCount;
 BTI_CHAR reserved[4];
 BTI_SINT flags;
 BTI_BYTE dupPointers;
 BTI_BYTE notUsed;
 BTI_SINT allocations;
} FILE_SPECS;

typedef struct
{
 BTI_SINT position;
 BTI_SINT length;
 BTI_SINT flags;
 BTI_CHAR reserved[4];
 BTI_CHAR type;
 BTI_CHAR null;
 BTI_CHAR notUsed[2];
 BTI_BYTE manualKeyNumber;
 BTI_BYTE acsNumber;
} KEY_SPECS;

typedef struct
{
 FILE_SPECS fileSpecs;
 KEY_SPECS keySpecs[2];
} FILE_CREATE_BUF;
/* populate the data buffer */
FILE_CREATE_BUF databug;
95

Designing a Database
memset (databuf, 0, size of (databuf)); /*
initialize databuf */
dataBuf.recLength = 72;
dataBuf.pageSize = 4096;
dataBuf.indexCount = 2;
dataBuf.keySpecs[0].position = 1;
dataBuf.keySpecs[0].length = 25;
dataBuf.keySpecs[0].flags = EXTTYPE_KEY +
NOCASE_KEY + DUP + MOD;
dataBuf.keySpecs[0].type = ZSTRING;
dataBuf.keySpecs[1].position = 52;
dataBuf.keySpecs[1].length = 4;
dataBuf.keySpecs[1].flags = EXTTYPE_KEY;
dataBuf.keySpecs[1].type = INTEGER;
/* create the file */
strcpy((BTI_CHAR *)keyBuf,
"c:\\sample\\sample2.mkd");
dataLen = sizeof(dataBuf);
status = BTRV(B_CREATE, posBlock, &dataBuf,
&dataLen, keyBuf, 0);

Create Index
Operation

If you create files with pre-defined keys, the indexes are populated
with each insert, update or delete. This is necessary for most database
files. However, there is a class of database files that are fully populated
before being read. These include temporary sort files and fully
populated files that are delivered as part of a product.

For these files, it may be faster to build the keys with Create Index
(31) after the records are written. The file should be created with no
index defined so that inserting records can be accomplished faster.
Then the Create Index operation will sort the keys and build the
indexes in a more efficient manner.

Indexes created this way are also more efficient and provide faster
access. There is no need for the transactional database engine to leave
empty space at the end of each page during a Create Index (31)
because the index pages are loaded in key order. Each page is filled to
nearly 100%. In contrast, when an Insert (2) or Update (3) operation
fills an index page, the page is split in half, with half of the records
being copied to a new page. This process causes the average index
page to be about 50 to 65 percent full. If index balancing is used, it
may be 65 to 75 percent full.

Another advantage of the Create Index (31) operation is that all the
new index pages created are located close together at the end of the
96

Creating a Data File
file. For large files, this means less distance for the read head to cover
between reads.

This technique may not be faster when files are small, such as a few
thousand records. The file would also need larger index fields to
benefit. Moreover, if all index pages can fit into the transactional
interface cache, this method shows no improvement in speed. But if
only a small percentage of the index pages are in cache at any one
time, this method saves a lot of extra index page writes. A file
containing a million records can be built in minutes or hours instead
of days with this technique. The greater the number of index pages
in the file, the faster it is to build indexes with Create Index (31) than
it is one record insert at a time.

In summary, the critical thing to avoid in loading a Pervasive PSQL
file from scratch is not enough cache memory to hold all the index
pages. If this is the case, use Create (14) to create the file without
indexes and use Create Index (31) when all the data records have
been inserted.

See Btrieve API Guide for detailed information on these operations.
97

Designing a Database
Calculating the Logical Record Length
You must supply the logical record length to the Create operation
(14). The logical record length is the number of bytes of fixed-length
data in the file. To obtain this value, calculate how many bytes of data
you need to store in the fixed-length portion of each record.

For example, the following table shows how the data bytes in the
example Employees file are added together to obtain a logical record
length:

In calculating the logical record length, you do not count variable-
length data, because variable-length information is stored apart
from the fixed-length record in the file (on variable pages).

The maximum logical record length depends on the file format as
defined in Table 16.

Field Length (in Bytes)

Last Name 25

First Name 25

Middle Initial 1

Employee ID 4

Phone Number 13

Pay Rate 4

LOGICAL RECORD LENGTH 72

Table 16 Maximum Logical Record Length by File Format

Pervasive PSQL
Version

Example

9.5 page size minus 10 minus 2 (record overhead)

8.x through 9.x page size minus 8 minus 2 (record overhead)

6.x through 7.x page size minus 6 minus 2 (record overhead)
98

Calculating the Logical Record Length
Pre-6.x page size minus 6 minus 2 (record overhead)

Note: The record overhead in these examples is for a fixed-length record (not a
variable record) without record compression.

Table 16 Maximum Logical Record Length by File Format

Pervasive PSQL
Version

Example
99

Designing a Database
Choosing a Page Size
All pages in a data file are the same size. Therefore, when you
determine the size of the pages in your file, you must answer the
following questions:

What is the optimum size for data pages, which hold the fixed-
length portion of records to reduce wasted bytes.

What is the smallest size that allows index pages to hold your
largest key definition? (Even if you do not define keys for your
file, the transactional database engine adds a key if the
Transaction Durability feature is enabled.)

The following sections guide you through answering these questions.
With your answers, you can select a page size that best fits your file.

Optimum Page Size For Minimizing Disk Space
Before you can determine the optimum page size for your file, you
must first calculate the file’s physical record length. The physical
record length is the sum of the logical record length and the overhead
required to store a record on a data page of the file. (For more
generalized information about page size, see Page Size.)

The transactional database engine always stores a minimum of 2
bytes of overhead information in every record (as a usage count for
that record). The transactional database engine also stores an
additional number of bytes in each record, depending on how you
define the records and keys in your file.

The following table shows how many bytes of record overhead
required without record compression, depending on the
characteristics of your file.

Table 17 Record Overhead in Bytes Without Record Compression

File Characteristic File Format

6.x 7.x 8.x 9.0 and 9.5

Usage Count 2 2 2 2

Duplicate Key (per key) 8 8 8 8

Variable Pointer (with variable record) 4 4 6 6
100

Choosing a Page Size
The following table shows how many bytes of record overhead
required when using record compression, depending on the
characteristics of your file.

Record Length (if VATs1 used) 4 4 4 4

Blank Truncation Use (with VATs/without
VATs)

2/4 2/4 2/4 2/4

System Data na2 8 8 8

1VAT: variable-tail allocation table
2na: not applicable

Table 18 Record Overhead in Bytes With Record Compression

File Characteristic File Format

6.x 7.x 8.x 9.0 and 9.5

Usage Count 2 2 2 2

Duplicate Key (per key) 8 8 8 8

Variable Pointer 4 4 6 6

Record Length (if VATs1 used) 4 4 4 4

Record Compression Flag 1 1 1 1

System Data na2 8 8 8

1VAT: variable-tail allocation table
2na: not applicable

Table 17 Record Overhead in Bytes Without Record Compression

File Characteristic File Format

6.x 7.x 8.x 9.0 and 9.5
101

Designing a Database
The following table shows how many bytes of page overhead are
required depending on the page type.

The following table shows how many bytes of overhead you must
add to the logical record length to obtain the physical record length
(based on how you define the records and keys for your file). You can
also find a summary of this record overhead information in Table 17
and Table 18.

Table 19 Page Overhead in Bytes

Page Type File Format

6.x 7.x 8.x 9.0 9.5

Data 6 6 8 8 10

Index 12 12 14 14 16

Variable 12 12 16 16 18

Table 20 Physical Record Length Worksheet

Task Description Example

1 Determine the logical record length. For instructions, refer to Calculating the Logical
Record Length.

The example file for this worksheet uses a logical record length of 72 bytes. For files with
variable-length records, the logical record length refers only to the fixed-length portion of
the record.

72

2 Add 2 for the record usage count.

For a compressed record’s entry, you need to add the usage count plus the variable
pointer plus the record compression flag:

6.x and 7.x:7 bytes (2 + 4 + 1)
8.x and later:9 bytes (2 + 6 + 1)

72 + 2 = 74

3 For each linked-duplicatable key, add 8.

When calculating the number of bytes for duplicatable keys, the transactional database
engine does not allocate duplicate pointer space for keys defined as repeating
duplicatable at creation time. By default, keys that allow duplicates created at file creation
time are linked-duplicate keys. For a compressed record’s entry, add 9 (nine) for pointers
for duplicate keys.

The example file has one linked-duplicatable key.

74 + 8 = 82

4 For each reserved duplicate pointer, add 8. The example file has no reserved duplicate
pointers.

82 + 0 = 82
102

Choosing a Page Size
Using the physical record length, you now can determine the file’s
optimum page size for data pages.

The transactional database engine stores the fixed length portion of
a data record in the data pages; however, it does not break the fixed-
length portion of a record across pages. Also, in each data page, the
transactional database engine stores overhead information (see
Table 17 and 18). You must account for this additional overhead
when determining the page size.

A file contains unused space if the page size you choose minus the
overhead information amount is not an exact multiple of the
physical record length. You can use the formula to find an efficient
page size:

Unused bytes = (Page Size minus Data Page Overhead per
Table 17 and Table 18) mod (Physical Record Length)

To optimize your file’s use of disk space, select a page size that can
buffer your records with the least amount of unused space. The
supported page size varies with the file format. See Table 21. If the
internal record length (user data + record overhead) is small and the
page size is large, the wasted space could be substantial .

5 If the file allows variable-length records, add 4 for pre-8.x files and 6 for 8.x or later files.

The example file does not allow variable-length records.

82 + 0 = 82

6 If the file uses VATs, add 4.

The example file does not use VATs.

82 + 0 = 82

7 If the file uses blank truncation, add one of the following:
• 2 if the file does not use VATs
• 4 if the file uses VATs.

The example file does not use VATs.

82 + 0 = 82

8 If the file uses System Data to create a System Key, add 8.

The example file does not use System Data.

82 + 0 = 82

PHYSICAL RECORD LENGTH 82

Table 20 Physical Record Length Worksheet

Task Description Example
103

Designing a Database
Optimum Page Size Example

Consider an example in which the physical record length is 194 bytes.
The following table shows how many records can be stored on a page
and how many bytes of unused space remains on a page for each
possible page size.

Table 21 Physical Record Length Example: 194 Bytes

Applicable File
Format

Page
Size

Records per
Page

Unused Bytes

Pre-8.x 512 2 118 (512 – 6) mod 194

8.x through 9.0 116 (512 – 8) mod 194

Pre-8.x 1,024 5 48 (1,024 – 6) mod 194

8.x through 9.0 46 (1,024 – 8) mod 194

9.5 44 (1,024 – 10) mod 194

Pre-8.x 1,536 7 172 (1,536 – 6) mod 194

8.x through 9.0 172 (1,536 – 6) mod 194

Pre-8.x 2,048 10 102 (2,048 – 6) mod 194

8.x through 9.0 100 (2,048 – 8) mod 194

9.5 98 (2,048 – 10) mod 194

Pre-8.x 2,560 13 32 (2,560 – 6) mod 194

8.x through 9.0 32 (2,560 – 6) mod 194

Pre-8.x 3,072 15 156 (3,072 – 6) mod 194

8.x through 9.0 156 (3,072 – 6) mod 194

Pre-8.x 3,584 18 86 (3584 – 6) mod 194

8.x through 9.0 86 (3584 – 6) mod 194

Pre-8.x 4,096 21 16 (4096 – 6) mod 194

8.x through 9.0 14 (4096 – 8) mod 194

9.5 12 (4096 – 10) mod 194

9.0 8,192 42 36 (8192 – 8) mod 194

9.5 34 (8192 – 10) mod 194
104

Choosing a Page Size
As the table above indicates, if you select a page size of 512, only 2
records can be stored per page and 114 to 118 bytes of each page are
unused depending on the file format. However, if you select a page
size of 4,096, 21 records can be stored per page and only 16 bytes of
each page are unused. Those same 21 records would result in over 2
KB of lost space with a page size of 512.

If you have a very small physical record length, most page sizes will
result in very little wasted space. However, pre-8.x file versions have
a maximum limit of 256 records per page. In that case, if you have a
small physical record length, and if you choose a larger page size (for
example, 4,096 bytes), it will result in a large amount of wasted space.
For example, Table 22 shows the behavior of 14 byte record length for
a pre-8.x file version.

9.5 16, 384 84 78 (16,384 – 10) mod 194

For planning purposes, note that page and record overhead may increase for
future file formats. Given a current file format, a record size that exactly fits on a
page may require a larger page size to fit in a future file format.

Also note that the database engine automatically upgrades the page size if the
record and overhead cannot fit within a specified page size. For example,
suppose that you specify a page size of 4,096 for a 9.x file, but the record and
overhead requirement is 4,632. The engine will use a page size of 8,192.

Table 22 Example of Pre-8.x File Versions: Record Length 14 Bytes

Page Size Records per Page Unused Bytes

 512 36 2 (512 – 6) mod 14

1,024 72 10 (1,024 – 6) mod 14

1,536 109 4 (1,536 – 6) mod 14

2,048 145 12 (2,048 – 6) mod 14

2,560 182 6 (2,560 – 6) mod 14

3,072 219 0 (3,072 – 6) mod 14

3,584 255 8 (3,584 – 6) mod 14

4,096 256 506 (4,096 – 6) mod 14

Table 21 Physical Record Length Example: 194 Bytes

Applicable File
Format

Page
Size

Records per
Page

Unused Bytes
105

Designing a Database
Minimum Page Size
The page size you choose must be large enough to hold eight key
values (plus overhead). To find the smallest page size allowable for
your file, add the values specified in Table 23.

The table uses a 9.5 file format as an example.

Select any valid page size that is equal to or greater than the result.
Remember that the page size you select must accommodate the size
of any keys created after file creation. The total number of key

Table 23 Minimum Page Size Worksheet

Task Description Example

1 Determine the size of the largest key in the file, in bytes.
(Using the example Employee file, the largest key is 25
bytes.)

In files that do not have a unique key defined, the system-
defined log key (also called System Data) may be the largest
key. Its size is 8 bytes.

25

2 Add one of the following:
• For keys that do not allow duplicates or that use repeating

duplicates, add 8 bytes.
• For keys that use linked duplicates, add 12 bytes. (This

example uses linked duplicates.)

25 + 12 = 37

3 Multiply the result by 8. (The transactional database engine
requires room for a minimum of 8 keys on a page.)

37 * 8 = 296

4 Add index page overhead for the file format:

See entry for Index pages in Table 19.

296 + 16 = 312

MINIMUM PAGE SIZE 312 bytes
106

Choosing a Page Size
segments may dictate the minimum page size. For example, you can
only have eight key segments defined in a file using a 512 page size.

Table 24 Minimum Page Size Worksheet

Page Size Number of Key Segments by File Version

6.x and 7.x 8.x 9.0 9.5

512 8 8 8 n/a

1,024 23 23 23 97

1,536 24 24 24 n/a

2,048 54 54 54 97

2,560 54 54 54 n/a

3,072 54 54 54 n/a

3,584 54 54 54 n/a

4,096 119 119 119 204

8,192 n/a n/a 119 420

16,384 n/a n/a n/a 420

“n/a” stands for “not applicable”
107

Designing a Database
Estimating File Size
You can estimate the number of pages, and therefore the number of
bytes required to store a file. However, when using the formulas,
consider that they only approximate file size because of the way the
transactional interface dynamically manipulates pages.

Note The following discussion and the formulas for determining
file size do not apply to files that use data compression, because
the record length for those files depends on the number of
repeating characters in each record.

While the formulas are based on the maximum storage required,
they assume that only one task is updating or inserting records into
the file at a time. File size increases if more than one task updates or
inserts records into the file during simultaneous concurrent
transactions.

The formulas also assume that no records have been deleted yet from
the file. You can delete any number of records in the file, and the file
remains the same size. The transactional interface does not
deallocate the pages that were occupied by the deleted records.
Rather, the transactional interface re-uses them as new records are
inserted into the file (before allocating new pages).

If the final outcome of your calculations contains a fractional value,
round the number to the next highest whole number.

Formula and
Derivative
Steps

The following formula is use to calculate the maximum number of
bytes required to store the file. The “see step” references are to the
steps following the formula that explain the individual components
of the formula.

File size in bytes =

(page size *
(number of data pages [see step 1] +
number of index pages [see step 2] +
number of variable pages [see step 3] +
number of other pages [see step 4] +
number of shadow pool pages [see step 5]))
108

Estimating File Size
+ (special page size [see step 6] *
(number of PAT pages [see step 7] +
number of FCR pages + number of reserved pages [see step

8]))

Determining file size requires that you account for two different
categories of pages. The standard page category includes the pages
when a data file is first created (see also Create (14) in Btrieve API
Guide). In addition, the formula must account for special (non-
standard) pages as listed in Table 25. The special pages are not always
a multiple of the file page size.

1 Calculate the number of data pages using the following formula.

Number of data pages =
#r /
((PS - DPO) / PRL)

where:

#r is the number of records

PS is the page size

DPO is the data page overhead (see Table 17 and Table 18)

PRL is the physical record length (see Table 20)

2 Calculate the number of index pages for each defined key using
one of the following formulas.

For each index that does not allow duplicates or that allows
repeating-duplicatable keys:

Number of index pages =
(#r /
((PS - IPO) / (KL + 8))) * 2

where:

#r is the number of records

PS is the page size

IPO is the index page overhead

KL is the key length

For each index that allows linked-duplicatable keys:

Number of index pages =
(#UKV /
((PS - IPO) / (KL + 12))) * 2

where:
109

Designing a Database
#UKV is the number of unique key values

PS is the page size

IPO is the index page overhead

KL is the key length

The B-tree index structure guarantees at least 50 percent usage
of the index pages. Therefore, the index page calculations
multiply the minimum number of index pages required by 2 to
account for the maximum size.

3 If your file contains variable-length records, calculate the
number of variable pages using the following formula:

Number of variable pages =
(AVL * #r) / (1 - (FST + (VPO/PS))

where:

AVL is the average length of the variable portion of a typical
record

#r is the number of records

FST is the free space threshold specified when the file is
created (see also Create (14) in Btrieve API Guide)

VPO is the variable page overhead (see Table 19)

PS is the page size

Note You can gain only a very rough estimate of the number of
variable pages due to the difficulty in estimating the average
number of records whose variable-length portion fit on the same
page.

4 Calculate the number for any other regular pages:

1 page for each alternate collating sequence used (if any)

1 page for a referential integrity (RI) page if the file has RI
constraints.

The sum of steps 1, 2, 3, and 4 represents the estimated total
number of logical pages that the file will contain.

5 Calculate the estimated number of pages in the shadow page
pool. The database engine uses a pool for shadow paging. Use
the following formula to estimate the number of pages in the
pool:
110

Estimating File Size
Size of the shadow page pool = (number of keys + 1)

* (average number of inserts, updates, and deletes)
* (number of concurrent transactions)

This formula applies if tasks execute Insert, Update, and Delete
operations outside transactions. If tasks are executing these
operations inside transactions, multiply the average number of
Insert, Update, and Delete operations expected in the inside
transactions times the outside-transactional value determined
by the formula. You must further increase the estimated size of
the pool of unused pages if tasks are executing simultaneous
concurrent transactions.

6 Determine special page size from Table 25 by referencing file
version and data page size. Depending on the file format version,
the pages sizes for FCR, reserved, and PAT pages are different
from the normal pages sizes for data, index, and variable pages.

Table 25 Page Sizes of Special Pages by File Format

Normal
Page Size

File Format
v6.x and 7.x

File Format 8.x File Format 9.0
through 9.4

File Format 9.5

Special
Page
Size

PAT Page
Entries

Special
Page
Size

PAT
Page
Entries

Special
Page
Size

PAT Page
Entries

Special
Page
Size

PAT
Page
Entries

512 512 n/a 2,048 320 2,048 320 n/a n/a

1,024 1,024 n/a 2,048 320 2,048 320 4,096 480

1,536 1,536 n/a 3,072 480 3,072 480 n/a n/a

2,048 2,048 n/a 4,096 640 4,096 640 4,096 480

2,560 2,560 n/a 5,120 800 5,120 800 n/a n/a

3,072 3,072 n/a 6,144 960 6,144 960 n/a n/a

3,584 3,584 n/a 7,168 1,120 7,168 1,120 n/a n/a

4,096 4,096 n/a 8,192 1,280 8,192 1,280 8,192 1,280

8,192 n/a n/a n/a n/a n/a n/a 16,384 16,000

16,384 n/a n/a n/a n/a n/a n/a 16,384 16,000

“n/a” stands for “not applicable”
111

Designing a Database
7 Calculate the number of Page Allocation Table (PAT) pages (see
also Page Preallocation).

Every file has a minimum of two PAT pages. To calculate the
number of PAT pages in a file, use one of the following formulas:

For pre-8.x file formats:

Number of PAT pages =
(((sum of pages from steps 1 through 3) * 4) /
(page size - 8 bytes for overhead)) * 2

For 8.x or later file formats:

Number of PAT pages =
2 * (sum of pages from steps 1 through 3 /
number of PAT entries)

For number of PAT entries, see Table 25 and look up file version
and data page size.

8 Include 2 pages for the file control record (FCR) pages (see also
File Control Record (FCR)). If you are using 8.x or later file
format, also include 2 pages for the reserved pages.
112

Optimizing Your Database
Optimizing Your Database
The transactional database engine provides several features that
allow you to conserve disk space and improve system performance.
These features include the following:

Duplicatable Keys

Page Preallocation

Blank Truncation

Record Compression

Index Balancing

Variable-tail Allocation Tables

Key-Only Files

Duplicatable
Keys

If you define a key to be duplicatable, the transactional database
engine allows more than one record to have the same value for that
key. Otherwise, each record must have a unique value for the key. If
one segment of a segmented key is duplicatable, all the segments
must be duplicatable.

Linked-Duplicatable Keys
By default in a v7.0 or later file, the transactional database engine
stores duplicatable keys as linked-duplicatable keys. When the first
record with a duplicate key value is inserted into a file, the
transactional database engine stores the key value on an index page.
The transactional database engine also initializes two pointers to
identify the first and last record with this key value. Additionally, the
transactional database engine stores a pair of pointers at the end of
the record on the data page. These pointers identify the previous and
next record with the same key value. When you create a file, you can
reserve pointers for use in creating linked-duplicatable keys in the
future.

If you anticipate adding duplicatable keys after you create a data file
and you want the keys to use the linked-duplicatable method, you
can preallocate space for pointers in the file.
113

Designing a Database
Repeating-Duplicatable Keys
If no room is available to create a linked-duplicatable key (that is, if
no duplicate pointers are available), the transactional database
engine creates a repeating-duplicatable key. The transactional
database engine stores every key value of a repeating-duplicatable
key both on a data page and on an index page. In other words, the
key’s value resides in the record on a data page and is repeated in the
key entry on an index page.

Note For users of pre-6.0 Btrieve, the term linked-duplicatable
corresponds to permanent, and the term repeating-duplicatable
corresponds to supplemental.

You can define a key as a repeating-duplicatable key by setting bit 7
(0x80) of the key flags in the key’s specification block on a Create
(14) or Create Index (31) operation. Prior to 6.10, you could not
define a key to be a repeating-duplicatable key, and bit 7 of the key
flags was not user-definable. In 6.0 and later, the Stat operation (15)
sets bit 7 if no room is available to create a linked-duplicatable key
(and therefore, if the transactional database engine has to create the
key as a repeating-duplicatable key).

Files that use the 5.x format use this same key flag (called the
supplemental key attribute in 5.x) to designate that a key was created
with the 5.x Create Supplemental Index operation (31).

Note In pre-6.0 files, you can drop supplemental indexes only.
Permanent indexes, as their name implies, cannot be dropped.
In 6.0 and later files, you can drop any index.

Linked vs. Repeating
Each method has performance advantages:

Linked-duplicatable keys provide faster lookup, because the
transactional database engine reads fewer pages.

Repeating-duplicatable keys result in fewer index page conflicts
when multiple users access the same page concurrently.
114

Optimizing Your Database
There are trade-offs in performance between linked-duplicate keys
and repeating-duplicate keys. Generally, if the average number of
duplicates of a key is two or more, a linked-duplicate key will take up
less space on the disk and searches will be generally faster because
there are fewer index pages. However, the opposite is true if your file
stores very few records with duplicate keys and the key length is very
short. This is because an entry in the linked-duplicatable tree
requires 8 bytes for pointers, whereas a repeating-duplicatable key
entry requires 4.

If only a small percentage of keys have any duplicates, it is
advantageous to use repeating-duplicate keys to save the extra 8 bytes
in each data record. There is no noticeable performance advantage to
either choice when the average number of duplicates of a key is less
than two.

If you expect several concurrent transactions to be active on the same
file at the same time, repeating-duplicate keys will provide a greater
probability that these transactions do not try to access the same
pages. All pages involved in writes during a concurrent transaction
have implicit locks on them. When a page is required in order to
make a change during a concurrent transaction and the page is
involved in another concurrent transaction, the transactional
database engine might wait until the other transaction is complete.
If these kind of implicit waits happen very often, the performance of
the application goes down.

Neither key storage method is recommended as a shortcut for
tracking chronological order. For linked-duplicatable keys, the
transactional database engine does maintain the chronological order
of records that are inserted after the key is created, but if you rebuild
the key’s index, the chronological order is lost. For repeating-
duplicatable keys, the transactional database engine maintains the
chronological order of the records only if there was no record
deletion between the time the key is built and a new record is
inserted. To track chronological order, use an AUTOINCREMENT
data type on the key.

Page
Preallocation

Preallocation guarantees that disk space is available when the
transactional database engine needs it. The transactional database
engine allows you to preallocate up to 65,535 pages to a file when you
create a data file. Table 26 shows the maximum number of bytes the
115

Designing a Database
transactional database engine allocates for a file of each possible page
size (assuming you allocate 65,535 full pages of disk space):

If not enough space exists on the disk to preallocate the number of
pages you specify, the transactional database engine returns Status
Code 18 (Disk Full) and does not create the file.

The speed of file operations can be enhanced if a data file occupies a
contiguous area on the disk. The increase in speed is most noticeable
on very large files. To preallocate contiguous disk space for a file, the
device on which you are creating the file must have the required
number of bytes of contiguous free space available. The transactional
database engine preallocates the number of pages you specify,
whether or not the space on the disk is contiguous.

Use the formulas described earlier in this chapter to determine the
number of data and index pages the file requires. Round any
remainder from this part of the calculation to the next highest whole
number.

When you preallocate pages for a file, that file actually occupies that
area of the disk. No other data file can use the preallocated area of
disk until you delete or replace that file.

Table 26 Disk Space Allocation based on Page Size

Page Size Disk Space Allocated1

 512 33,553,920

1,024 67,107,840

1,536 100,661,760

2,048 134,215,680

2,560 167,769,600

3,072 201,323,520

3,584 243,877,440

4,096 268,431,360

8,192 536,862,720

16,384 1,073,725,440

1Value is page size multiplied by 65,535
116

Optimizing Your Database
As you insert records, the transactional database engine uses the
preallocated space for data and indexes. When all the preallocated
space for the file is in use, the transactional database engine expands
the file as new records are inserted.

When you issue an API Stat operation (15), the transactional
database engine returns the difference between the number of pages
you allocated at the time you created the file and the number of pages
that the transactional database engine currently has in use. This
number is always less than the number of pages you specify for
preallocation because the transactional database engine considers a
certain number of pages to be in use when a file is created, even if you
have not inserted any records.

Once a file page is in use, it remains in use even if you delete all the
records stored on that page. The number of unused pages that the
Stat operation returns never increases. When you delete a record, the
transactional database engine maintains a list of free space in the file
and reuses the available space when you insert new records.

Even if the number of unused pages that the Stat operation returns is
zero, the file might still have free space available. The number of
unused pages can be zero if one of the following is true:

You did not preallocate any pages to the file.

All the pages that you preallocated were in use at one time or
another.

Blank
Truncation

If you choose to truncate blanks, the transactional database engine
does not store any trailing blanks in the variable-length portion of
the record when it writes the record to the file. Blank truncation has
no effect on the fixed-length portion of a record. The transactional
database engine does not remove blanks that are embedded in the
data.

When you read a record that contains truncated trailing blanks, the
transactional database engine expands the record to its original
length. The value the transactional database engine returns in the
Data Buffer Length parameter includes any expanded blanks. Blank
truncation adds either 2 bytes or 4 bytes of overhead to the physical
size of the record (stored with the fixed-record portion): 2 if the file
does not use VATs, 4 if it does.
117

Designing a Database
Record
Compression

When you create a file, you can specify whether you want the
transactional database engine to compress the data records when it
stores them in the file. Record compression can result in a significant
reduction of the space needed to store records that contain many
repeating characters. The transactional database engine compresses
five or more of the same contiguous characters into 5 bytes.

Consider using record compression in the following circumstances:

The records to be compressed are structured so that the benefits
of using compression are maximized.

The need for better disk utilization outweighs the possible
increased processing and disk access times required for
compressed files.

The computer running the transactional database engine can
supply the extra memory that the transactional database engine
uses for compression buffers.

Note The database engine automatically uses record
compression on files that use system data and have a record
length that exceeds the maximum length allowed. See Table 12.

When you perform record I/O on compressed files, the transactional
database engine uses a compression buffer to provide a block of
memory for the record compression and expansion process. To
ensure sufficient memory to compress or expand a record, the
transactional database engine requires enough buffer space to store
twice the length of the longest record your task inserts into the
compressed file. This requirement can have an impact on the
amount of free memory remaining in the computer after the
transactional database engine loads. For example, if the longest
record your task writes or retrieves is 64 KB long, the transactional
database engine requires 128 KB of memory to compress and expand
that record.

Note If your file uses VATs, the transactional database engine’s
requirement for buffer space is the product of 16 times the file’s
page size. For example, on a 4 KB record, 64 KB of memory are
required to compress and expand the record.
118

Optimizing Your Database
Because the final length of a compressed record cannot be
determined until the record is written to the file, the transactional
database engine always creates a compressed file as a variable-length
record file. In the data page, the transactional database engine stores
either 7 bytes (if the file does not use VATs) or 11 bytes (if it does),
plus an additional 8 bytes for each duplicate key pointer. The
transactional database engine then stores the record on the variable
page. Because the compressed images of the records are stored as
variable-length records, individual records may become fragmented
across several file pages if your task performs frequent insertions,
updates, and deletions. The fragmentation can result in slower access
times because the transactional database engine may need to read
multiple file pages to retrieve a single record.

The record compression option is most effective when each record
has the potential for containing a large number of repeating
characters. For example, a record may contain several fields, all of
which may be initialized to blanks by your task when it inserts the
record into the file. Compression is more efficient if these fields are
grouped together in the record, rather than being separated by fields
containing other values.

To use record compression, the file must have been created with the
compression flag set. Key-only files do not allow compression.

Index
Balancing

The transactional database engine allows you to further conserve
disk space by employing index balancing. By default, the
transactional database engine does not use index balancing, so that
each time a current index page is filled, the transactional database
engine must create a new index page. When index balancing is active,
the transactional database engine can frequently avoid creating a
new index page each time a current index page is filled. Index
balancing forces the transactional database engine to look for
available space on adjoining index pages. If space is available on one
of those pages, the transactional database engine moves keys from
the full index page to the page with free space.

The balancing process not only results in fewer index pages but also
produces more densely populated indexes, better overall disk usage,
and faster response on most read operations. If you add keys to the
file in sorted order, index page usage increases from 50 percent to
nearly 100 percent when you use index balancing. If you add keys
119

Designing a Database
randomly, the minimum index page usage increases from 50 percent
to 66 percent.

On insert and update operations, the balancing logic requires the
transactional database engine to examine more pages in the file and
might possibly require more disk I/O. The extra disk I/O slows down
file updates. Although the exact effects of balancing indexes vary in
different situations, using index balancing typically degrades
performance on write operations by about 5 to 10 percent.

The transactional database engine allows you to fine-tune your
transactional database engine environment by offering two ways to
turn on index balancing: at the engine level or at the file level. If you
specify the Index Balancing configuration option during setup, the
transactional database engine applies index balancing to every file.
For a description of how to specify the Index Balancing
configuration option, refer to the Pervasive PSQL User's Guide.

You can also designate that only specific files are to be index
balanced. To do so, set bit 5 (0x20) of the file’s file flags at creation
time. If the index Balancing configuration option is off when the
transactional database engine is started, the transactional database
engine applies index balancing only to indexes on files that have bit
5 of the file flags set.

The transactional database engine ignores bit 5 in all files’ file flags if
the index balancing configuration option was on when the
transactional database engine was started. In this situation, the
transactional database engine applies index balancing to every file.

Files remain compatible regardless of whether index balancing is
active. Also, you do not have to specify index balancing to access files
that contain balanced index pages. If you turn on the transactional
database engine’s index balancing option, index pages in existing
files are not affected until they become full. The transactional
database engine does not re-balance indexes on existing files as a
result of enabling this option. Similarly, turning off the index
balancing option does not affect existing indexes. Whether this
option is on or off determines how the transactional database engine
handles full index pages.

Variable-tail
Allocation
Tables

Variable-tail allocation tables give the transactional database engine
faster access to data residing at large offsets in very large records and
significantly reduce the buffer sizes the transactional database engine
120

Optimizing Your Database
needs when processing records in files that use data compression.
Using a record’s VAT, the transactional database engine can divide
the variable-length portion of a record into smaller portions and
then store those portions in any number of variable tails. The
transactional database engine stores an equal amount of the record’s
data in each of the record’s variable tails (except the final variable
tail). The transactional database engine calculates the amount to
store in each variable tail by multiplying the file’s page size by 8. The
last variable tail contains any data that remains after the
transactional database engine divides the data among the other
variable tails.

Note The formula for finding the length of a variable tail (eight
times the page size) is an implementation detail that may change
in future versions of the transactional database engine.

In a file that employs VATs and has a 4,096-byte page size, the first
variable tail stores the bytes from offset 0 through 32,767 of the
record’s variable portion, the second tail stores offsets 32,768
through 65,535, and so on. The transactional database engine can
use the VAT to accelerate a seek to a large offset in a record because
the VAT allows it to skip the variable tails containing the record’s
lower-offset bytes.

An application specifies whether a file will use VATs when it creates
the file. If your application uses chunk operations on huge records
(larger than eight times the physical page size) and accesses chunks
in a random, nonsequential fashion, VATs may improve your
application’s performance. If your application uses whole record
operations, VATs do not improve performance because the
transactional database engine reads or writes the record sequentially;
the transactional database engine skips no bytes in the record.

If your application uses chunk operations but accesses records
sequentially (for example, it reads the first 32 KB of a record, then
reads the next 32 KB of the record, and so on until the end of the
record), VATs do not improve performance, because the
transactional database engine saves your position in a record
between operations, thereby eliminating the need to seek at the
beginning of a chunk operation.
121

Designing a Database
VATs also provide another advantage. When the transactional
database engine reads or writes a compressed record, it uses a buffer
that must be up to twice as large as the record’s uncompressed size.
If the file has VATs, that buffer needs to be only as large as two
variable tails (16 times the physical page size).

Key-Only Files In a key-only file, the entire record is stored with the key, so no data
pages are required. Key-only files are useful when your records
contain a single key, and that key takes up most of the record.
Another common use for a key-only file is as an external index for a
standard file.

The following restrictions apply to key-only files:

Each file can contain only a single key.

The maximum record length you can define is 253 bytes.

Key-only files cannot use data compression.

Step operations do not function with key-only files.

Although you can do a Get Position on a record in a key-only file,
that position will change whenever the record is updated.

Key-only files contain only File Control Record pages followed by a
number of PAT pages and index pages. If a key-only file has an ACS,
it may also have an ACS page. If you use ODBC to define referential
integrity constraints on the file, the file may contain one or more
variable pages, as well.
122

Setting Up Security
Setting Up Security
The transactional interface provides three methods of setting up file
security:

Assign an owner name to the file

Open the file in exclusive mode

Use the Pervasive PSQL Control Center (PCC) security settings

In addition, the transactional interface supports the native file-level
security (if available) on the server platforms.

Note Windows developers: File-level security is available on the
server if you installed the NTFS file system on your server. File
system security is not available if you installed the FAT file
system.

The transactional database engine provides the following features for
enhancing data security.

Owner Names The transactional interface allows you to restrict access to a file by
assigning an owner name using the Set Owner operation (see Set
Owner (29) in Btrieve API Guide.) Once you assign an owner name
to a file, the transactional interface requires that the name be
specified to access the file. This prevents any unauthorized access or
changing of a file’s contents by users or applications that do not
provide the owner name.

Likewise, you can clear the owner name from a file if you know the
owner name assigned to it.

Owner names are are case sensitive and can be short or long. A
“short” owner name can be up to 8 bytes long. A “long” owner name
can be up to 24 bytes long. For restrictions pertaining to long owner
names, see the section Procedure in Btrieve API Guide for Set Owner
(29).

You can restrict access to the file in these ways:
123

Designing a Database
Users can have read-only access without supplying an owner
name. However, neither a user nor a task can change the file’s
contents without supplying the owner name. Attempting to do
so causes the transactional database engine to return an error.

Users can be required to supply an owner name for any access
mode. The transactional database engine restricts all access to
the file unless the correct owner name is supplied.

When you assign an owner name, you can also request that the
database engine encrypt the data in the disk file using the owner
name as the encryption key. Encrypting the data on the disk ensures
that unauthorized users cannot examine your data by using a
debugger or a file dump utility. When you use the Set Owner
operation and specify encryption, the encryption occurs
immediately. The transactional database engine has control until the
entire file is encrypted, and the larger the file, the longer the
encryption process takes. Because encryption requires additional
processing time, you should select this option only if data security is
important in your environment.

You can use the Clear Owner (30) operation to remove ownership
restrictions from a file if you know the owner name assigned to it. In
addition, if you use the Clear Owner operation on an encrypted file,
the database engine decrypts it.

Exclusive Mode To limit access to a file to a single client, you can specify that the
transactional database engine open the file in exclusive mode. When
a client opens a file in exclusive mode, no other client can open the
file until the client that opened the file in exclusive mode closes it.

SQL Security See Database URIs for information on database Uniform Resource
Indicator (URI) strings. See the Pervasive PSQL User Guide for how
to access the PCC security settings.
124

c h a p t e r
6
Language Interfaces
Modules
This chapter provides language interface source modules provided in
the Pervasive PSQL SDK installation option.

Pervasive Software provides the source code for each language
interface. You can find additional information in the source
modules.

The online resources for developers include articles and sample code
for the various language interfaces. Visit http://
www.pervasivedb.com.

This chapter includes the following sections:

Interface Modules Overview

C/C++

COBOL

Delphi

DOS (Btrieve)

Pascal

Visual Basic
125

Language Interfaces Modules
Interface Modules Overview
If your programming language does not have an interface, check if
your compiler supports mixed language calls. If so, you may be able
to use the C interface.

Table 27 Btrieve Language Interface Source Modules

Language Compiler Source Module

C/C++ • Most C/C++ compilers,
including Embarcadero,
Microsoft, and WATCOM.
This interface provides
multiple platform support.

• Embarcadero C++ Builder

• BlobHdr.h (for Extended DOS platforms
using Embarcadero or Phar Lap only)

• BMemCopy.obj (for Extended DOS
platforms using Embarcadero or Phar
Lap only)

• BMemCopy.asm (source for
BMemCopy.obj)

• BtiTypes.h (platform-independent data
types)

• BtrApi.h (Btrieve function prototypes)
• BtrApi.c (Btrieve interface code for all

platforms)
• BtrConst.h (common Btrieve constants)
• BtrSamp.c (sample program)
• GenStat.h (Pervasive status codes)
• CBBtrv.cpp
• CBBtrv.mak
• CBBMain.cpp
• CBBMain.dfm
• CBBMain.h

COBOL • Micro Focus COBOL all
versions

• Microsoft COBOL 3

• MfxBtrv.bin (DOS Runtime for COBOL
Animator, non-Intel byte-order integer)

• MfxBtrv.asm (source for this binary)
• CobrBtrv.obj (DOS 16-bit)
• CobBtrv.asm (source for these objects)
• Mf2Btrv.bin (DOS runtime for COBOL

animator, Intel byte-order integer)
• Mf2Btrv.asm (source for this binary)
• BtrSamp.cbl (sample program)
126

Interface Modules Overview
The following table provides a comparison of some common data
types used in data buffers for Btrieve operations, such as Create and
Stat.

Delphi • Embarcadero Delphi 1
• Embarcadero Delphi 3 and

above

• Btr16.dpr
• BtrSam16.pas (sample program)
• BtrSam16.dfm
• BtrApi16.pas
• BtrConst.pas (common Btrieve

constants)
• Btr32.dpr
• Btr32.dof
• BtrSam32.dfm
• BtrSam32.pas (sample program)
• BtrApi32.pas
• BtrConst.pas (common Btrieve

constants)

Pascal • Borland Turbo Pascal 5 – 6
• Borland Pascal 7 for DOS
• Extended DOS Pascal for

Turbo Pascal 7
• Borland Turbo Pascal 1.5
• Borland Pascal 7 for Windows

• BtrApid.pas
• BtrSampd.pas (sample program)
• BtrConst.pas (common Btrieve

constants)
• BlobHdr.pas
• BtrApiw.pas
• BtrSampw.pas (sample program)
• BtrConst.pas (common Btrieve

constants)
• BlobHdr.pas

Visual Basic • Microsoft Visual Basic for
Windows NT and Windows 9X

• BtSamp32.vbp
• BtrSam32.bas (sample program)
• BtrFrm32.frm

Table 27 Btrieve Language Interface Source Modules continued

Language Compiler Source Module
127

Language Interfaces Modules
Table 28 Common Data Types Used in the Btrieve Data Buffer

Assembly C COBOL Delphi Pascal Visual Basic

doubleword long1 PIC 9(4) longint1 longint1 Long integer

word short int1 PIC 9(2) smallint1 integer1 Integer

byte char PIC X char char String

byte unsigned char PIC X byte byte Byte

1The value of integers depends on the environment in which you develop. In 32-bit environments, integers are
the same as long integers. In 16-bit environments, integers are the same as short, or small, integers.
128

C/C++
C/C++
This section provides C/C++ module information for the Btrieve
API.

The C/C++ interface facilitates writing platform-independent
applications. This interface supports development for the following
operating systems: DOS, Windows, and Linux. These modules also
are documented in Table 27.

Interface
Modules

This section describes in detail the modules that comprise the C
language interface.

BTRAPI.C

The file BTRAPI.C is the actual implementation of the C application
interface. It provides support for all applications that call BTRV and
BTRVID. When making a Btrieve call with either of these functions,
compile BtrApi.c and link its object with the other modules in your
application.

The BTRAPI.C file contains #include directives that instruct your
compiler to include BTRAPI.H, BTRCONST.H, BLOBHDR.H, and
BTITYPES.H. By including these files, BTRAPI.C takes advantage of
the data types that provide the platform independence associated
with the interface.

BTRAPI.H

The file BTRAPI.H contains the prototypes of the Btrieve functions.
The prototype definitions use the platform-independent data types
defined in the file BTITYPES.H. BTRAPI.H provides support for all
applications calling the BTRV and BTRVID functions.

BTRCONST.H

The file BTRCONST.H contains useful constants specific to Btrieve.
These constants can help you standardize references to Btrieve
operation codes, status codes, file specification flags, key
specification flags, and many more items.

You can use the C application interface without taking advantage of
BTRCONST.H, however, including the file may simplify your
programming effort.
129

Language Interfaces Modules
BTITYPES.H

The file BTITYPES.H defines the platform-independent data types.
By using the data types in BTITYPES.H on your Btrieve function
calls, your application ports among operating systems.

BTITYPES.H also describes the switches you must use to indicate the
operating system on which your application runs. Table 29 lists these
operating system switches.

BTRSAMP.C

The source file BTRSAMP.C is a sample Btrieve program that you
can compile, link, and run on any of the operating systems described
in Table 29.

Programming
Requirements

If you use the C application interface to make your application
platform independent, you must use the data types described in
BTITYPES.H. To see how these data types are used, see the file
BTRSAMP.C.

Note You must also specify a directive that identifies the
operating system on which the program executes. The available
values for the directive are listed in the header file BTITYPES.H.
Specify the directive using the appropriate command line option
for your compiler.

Table 29 Btrieve API Operating System Switches

Operating System Application Type Switch

DOS 16-bit

32-bit with Tenberry Extender and BStub.exe1

32-bit with Phar Lap 6

32-bit with Embarcadero PowerPack

BTI_DOS

BTI_DOS_32R

BTI_DOS_32P

BTI_DOS_32B

Linux 32-bit BTI_LINUX

Linux 64-bit BTI_LINUX_64

Win32 32-bit Windows BTI_WIN_32

Win64 64-bit Windows BTI_WIN_64
130

COBOL
COBOL
This section provides COBOL module information for the Btrieve
API.

Animated COBOL developers: The COBOL animator passes stack
parameters from left to right, while the non-animated COBOL
interface passes parameters from right to left. However, COBOL
passes integers in the Intel high-low format for both animated and
non-animated applications.

Also, the object modules MF2BTRV.OBJ and CSUPPORT.OBJ have
been dropped from the COBOL interface. Use the module
COBRBTRV.OBJ in place of these.

Non-animated COBOL developers: All numerical values passed to the
MicroKernel as a parameter must be in the Intel format (low-high
byte order). To accomplish this, define the values as COMP-5.
131

Language Interfaces Modules
Delphi
The Btrieve Delphi modules are documented in Table 27.
132

DOS (Btrieve)
DOS (Btrieve)
This section explains how a DOS application can use the Btrieve API.

Interface
Modules

The following modules comprise the language interface for DOS
applications using the Btrieve API.

BTRAPI.C

The file BTRAPI.C is the implementation of the C application
interface. This file also contains the DOS interface:

#if defined(BTI_DOS)

BTI_API BTRVID(

BTI_WORD operation,

BTI_VOID_PTR posBlock,

BTI_VOID_PTR dataBuffer,

BTI_WORD_PTR dataLength,

BTI_VOID_PTR keyBuffer,

BTI_SINT keyNumber,

BTI_BUFFER_PTR clientID)

BTRAPI.C provides support for all applications that call BTRV and
BTRVID. When making a Btrieve call with either of these functions,
compile BtrApi.c and link its object with the other modules in your
application.

The BTRAPI.C file contains #include directives that instruct your
compiler to include BTRAPI.H, BTRCONST.H, BLOBHDR.H, and
BTITYPES.H. By including these files, BTRAPI.C takes advantage of
the data types that provide the platform independence associated
with the interface.

BTRAPI.H

The file BTRAPI.H contains the prototypes of the Btrieve functions.
The prototype definitions use the platform-independent data types
defined in the file BTITYPES.H. BTRAPI.H provides support for all
applications calling the BTRV and BTRVID functions.
133

Language Interfaces Modules
BTRCONST.H

The file BTRCONST.H contains useful constants specific to Btrieve.
These constants can help you standardize references to Btrieve
operation codes, status codes, file specification flags, key
specification flags, and many more items.

You can use the C application interface without taking advantage of
BTRCONST.H, however, including the file may simplify your
programming effort.

BTITYPES.H

The file BTITYPES.H defines the platform-independent data types.
By using the data types in BTITYPES.H on your Btrieve function
calls, your application ports among operating systems.

BTITYPES.H also describes the switches you must use to indicate the
DOS operating system on which your application runs. The
following table lists these switches.

Table 30 Btrieve API Operating System Switches for DOS Applications

Operating System Application Type Switch

DOS 16-bit

32-bit with Tenberry Extender and BStub.exe1

32-bit with Phar Lap 6

32-bit with Embarcadero PowerPack

BTI_DOS

BTI_DOS_32R

BTI_DOS_32P

BTI_DOS_32B
134

Pascal
Pascal
This section describes the Pascal source modules for the Btrieve API.

The Btrieve API source modules for Pascal are described in the
following subsections.

Source Modules
The Pascal interface is comprised of the following source modules:

BTRAPID.PAS—Btrieve functions interface unit for DOS.

BTRCONST.PAS—Common Btrieve constants unit.

BTRSAMPD.PAS—Sample Btrieve program for DOS.

BBTRAPID.PAS

BTRAPID.PAS contains the source code implementation of the
Pascal application interface for DOS. This file provides support for
applications calling Btrieve functions.

In order for Turbo Pascal to properly compile and link the Btrieve
interface with the other modules in your application, you can
compile BTRAPID.PAS to create a Turbo Pascal unit which you then
list in the uses clause of your application’s source code.

BTRCONST.PAS

The file BTRCONST.PAS contains useful constants specific to
Btrieve. These constants can help you standardize references to
Btrieve operation codes, status codes, file specification flags, key
specification flags, and many more items.

To use BTRCONST.PAS, you can compile it to create a Turbo Pascal
unit which you then list in the uses clause of your application’s
source code.

You can use the Pascal application interface without taking
advantage of BTRCONST.PAS; however, using the file may simplify
your programming effort.

BTRSAMPD.PAS

The source file BTRSAMPD.PAS is a sample Btrieve programs that
you can compile, link, and run.
135

Language Interfaces Modules
Programming Notes
Calling a Btrieve function always returns an INTEGER value that
corresponds to a status code. After a Btrieve call, your application
should always check the value of this status code. A Status Code of 0
indicates a successful operation. Your application must be able to
recognize and resolve a non-zero status.

Although you must provide all parameters on every call, the
MicroKernel does not use every parameter for every operation. See
the Btrieve API Guide for a more detailed description of the
parameters that are relevant for each operation.

Note If your application uses Pascal record structures that
contain variant strings, consider that odd-length elements in a
Pascal record may require an extra byte of storage (even if the
record is not packed). This is an important consideration when
you define the record length for the Create (14) operation. See
your Pascal reference manual for more information on record
types.
136

Visual Basic
Visual Basic
This section describes the Visual Basic source modules for the
Btrieve API.I

Visual Basic, when compiling a 32-bit application, aligns members of
a UDT (user-defined data type) on 8-, 16-, or 32-bit boundaries,
depending on the size of that particular member. Unlike structures,
database rows are packed, meaning there is no unused space between
fields. Because there is no way to turn alignment off, there must be
some method to pack and unpack structures so that Visual Basic
applications can access a database. The Pervasive Btrieve Alignment
DLL, PALN32.DLL, is designed to handle this alignment issue.

In the case of Visual Basic, this language aligns elements at various
multiples of bits. The following table provides various data types and
shows how Visual Basic handles them:

Programs access Btrieve calls in Visual Basic by calling the BTRCALL
function. Access to this function is accomplished by including the
BTRAPI.BAS module in your project. The rest of the functions
required reside in PALN32.DLL.

To include PALN32.DLL in your project:

Select Project -> References and check the Pervasive Btrieve
Alignment Library module. If it is not shown, add it to the list
first by selecting the browse button and locating the file.

Visual Basic Type Type Constant Typical Size (in bytes) Boundary

Byte FLD_BYTE Any 1 byte (none)

String FLD_STRING Any 1 byte (none)

Boolean FLD_LOGICAL 2 2 bytes

Integer FLD_INTEGER 2 2 bytes

Currency FLD_MONEY 4 4 bytes

Long FLD_INTEGER 4 4 bytes

Single FLD_IEEE 4 4 bytes

Double FLD_IEEE 8 4 bytes
137

Language Interfaces Modules
The following table includes each function and the specific module
it requires.

Function Purpose Location Parameters Returns

BTRCALL To perform
Btrieve
operations

BTRAPI.BAS • OP As Integer
The Btrieve operation
number as listed in the
Btrieve API Guide.

• Pb$ As String
Stores the position block
in a string used to retrieve
or store records or to pass
structures to Btrieve.

• Db As Any
Data buffer. This
parameter is used to
retrieve or store records
or to pass structures to
Btrieve.

• DL As Long
Length of data buffer.

• Kb As Any
Key buffer.

• Kl As Integer
Length of key buffer.

• Kn As Integer
Key number.

• Integer
The Btrieve
status code
returned by
the
operation.
See Status
Codes and
Messages
for more
information
about a
specific
code.

RowToStruct Converts a row of
bytes into a
Visual Base UDT.

PALN32.DLL • row (1 to n) As Byte
Input array to retrieve
packed data.

• fld (1 to n) As FieldMap
A FieldMap array used to
determine data types of
individual fields.

• udt As Any
The UDT to store the
data.

• udtSize As Long
The size of the UDT.
Generate this value using
LenB().

• Integer
0 if okay.
Otherwise
an error
occurred.
138

Visual Basic
SetFieldMap Sets the
members of a
FieldMap
element.

PALN32.DLL • map As FieldMap
An element of a FieldMap
array.

• dataType As Integer
The field type, passes on
the following constants:
- FLD_STRING
- FLD_INTEGER
- FLD_IEEE
- FLD_MONEY
- FLD_LOGICAL
- FLD_BYTE
- FLD_UNICODE1

• size As Long
Size of the field, in bytes,
as stored in the database.

• Nothing

SetFieldMap
FromDDF

Sets all the
members of an
array of the
FieldMap type.

PALN32.DLL • path As String
A full path name to the
data source.

• table As String
Name of the table.

• userName As String
Reserved, pass a null
string (e.g. “ “).

• passwd As String
Reserved, pass a null
string (e.g. “ “).

• map (1 to n) As FieldMap
The destination FieldMap
array to fill. It must contain
the exact number of
elements as the number
of fields in the record.

• unicode As Integer
0 if strings are stored in
record as ASCII.
Otherwise, they are
stored as Unicode.

• Integer
0 if okay.
Otherwise,
an error
occurred.

Function Purpose Location Parameters Returns
139

Language Interfaces Modules
StructToRow Converts a Visual
Basic UDT to a
row of bytes

PALN32.DLL • row (1 to n) As Byte
Output array to store
packed data.

• fld (1 to n) As FieldMap
A FieldMap array used to
determine data types of
individual fields.

• udt As Any
The UDT from which to
retrieve data.

• udtSize As Long
The size of the UDT.
Generate this value using
LenB().

• Integer
0 if okay.
Otherwise,
an error
occurred.

1The field type FLD_UNICODE is used to specify a field of Visual Basic Type ‘String’ that is to be stored in
UNICODE both within the database row (packed structure) as well as within the UDT (user-defined data type).
If the field type FLD_STRING is used, it will be converted into the default ANSI code page character set of the
system in the database row, although UNICODE will be used in the UDT (user-defined data type). In short, if
you wish to store the string field in UNICODE in your Pervasive.SQL database, choose field type
FLD_UNICODE. If you wish to store the string field in the database in the default ANSI code page character
set of the system, choose FLD_STRING .

Function Purpose Location Parameters Returns
140

c h a p t e r
7
Interface Libraries
This chapter includes the following sections:

Overview of Interface Libraries

Distributing Pervasive PSQL Applications
141

Interface Libraries
Overview of Interface Libraries
The appropriate way to access the transactional interface from your
Windows application is to link to a library that references the Btrieve
Glue DLL when you compile. The Glue DLL is responsible for
“glueing” your application to the Interface DLL. Like traditional glue
(adhesive material), the Glue DLL is a thin layer between your
application and the Interface DLL. The Glue DLL is responsible for
successfully performing the following actions:

1 Loads the Interface DLL.

2 Binds to (that is, imports symbols from) the Interface DLL.

If the Glue DLL encounters a failure condition at any step, it issues
an appropriate status code that your application can use to alert the
user of the failure.

Table 31 shows the link libraries with which your application can
link, and the DLLs to load.

Linux Linux has no glue components. The application directly links against
the shared library that implements the interface. The transactional
interface link library is libpsqlmif.so for both Linux 32-bit and 64-bit
applications.

Table 31 Transactional Interface Programming Libraries

Operating System and Compiler1 Glue DLL Link Library

Windows 32-bit (Microsoft Visual C++, Watcom, Embarcadero) W3BTRV7.DLL W3BTRV7.LIB

Windows 64-bit W64BTRV.DLL W64BTRV.LIB

1Compiler-specific libraries are in different subdirectories. To link Win32 applications, use the \Win32 directory
if you use the Microsoft compiler; use the \Win32x directory if you use the Embarcadero or Watcom compiler.
142

Distributing Pervasive PSQL Applications
Distributing Pervasive PSQL Applications
If you plan to develop an application using a Pervasive PSQL
database engine, you need to be aware of the following requirements
for distributing your applications:

Distribution Rules for Pervasive PSQL

Registering Pervasive PSQL ActiveX Files

Installing Pervasive PSQL with your Application

Distribution
Rules for
Pervasive
PSQL

After you have developed an application with Pervasive PSQL, you
must be aware of the licensing agreement you have with Pervasive to
distribute your product. If you have any questions regarding your
distribution rights, please contact your Pervasive sales
representative.

Registering
Pervasive
PSQL ActiveX
Files

The following table includes the files required to run your
application built with Pervasive’s ActiveX interface:

Once you have distributed Pervasive PSQL ActiveX files and the
required DLLs, you must register the ActiveX files so that they
function correctly. There are two ways you can register these files:

Table 32 Redistributable Files

File Location Description

ACBTR732.OCX System directory Pervasive PSQL Data Source Control

ACCTR732.OCX System directory Pervasive PSQL Bound Controls

PEDTCONV.DLL System directory Data conversion DLL

PBTRVD32.DLL System directory Meta data handling DLL

SBTRV32.DLL System directory IDS communication DLL

SWCOMP32.DLL System directory Data compression DLL
143

Interface Libraries
Many current installation utilities, such as InstallShield, can be
modified to automatically register ActiveX controls during the
installation process (for more information, refer to the
documentation for your particular installation utility).

Another way to register ActiveX controls is to install the
redistributable file REGSVR32.EXE and run it during (or after)
the installation process. This is a simple ActiveX registration
utility that takes the name of the ActiveX to be registered as a
command-line parameter (e.g., REGSVR32
C:\MyInstall\ACBTR732.OCX).

Installing
Pervasive
PSQL with your
Application

Refer to the Installation Toolkit Handbook for information on
customizing the Pervasive PSQL installation.
144

c h a p t e r
8
Working with Records
This chapter discusses the following topics:

Sequence of Operations

Accessing Records

Inserting and Updating Records

Multi-Record Operations

Adding and Dropping Keys
145

Working with Records
Sequence of Operations
Some Btrieve operations can be issued at any time, such as Create
(14), Reset (28), and Version (26). However, most Btrieve operations
require that you open a file using the Open operation (0). Then, you
must establish a position, or currency, in the file before you can
operate on any records.

You can establish physical currency (based on physical location in
the file) or logical currency (based on a key value).

Use one of the following operations to establish physical
currency:

Step First (33)

Step Last (34)

Use one of the following operations to establish logical currency:

Get By Percentage (44)

Get Direct/Record (23)

Get Equal (5)

Get First (12)

Get Greater Than (8)

Get Greater Than or Equal (9)

Get Last (13)

Get Less Than (10)

Get Less Than or Equal (11)

After you establish currency, you can issue appropriate file I/O
operations, such as Insert (2), Update (3), and Delete (4).

Note Always use Btrieve operations to perform I/O on Btrieve
files; never perform standard I/O on a Btrieve file.

Based on your currency, you can move through the file as follows:
146

Sequence of Operations
If you have established position based on physical currency, use
the following operations: Step Next (24), Step Next Extended
(38), Step Previous (35), or Step Previous Extended (39). The
Step operations are useful for traversing a file quickly if your
application does not need to retrieve the records in a specific
order. The Extended operations are useful for working on a
number of records at one time.

If you have established position based on logical currency, use
the following operations: Get Next (6), Get Next Extended (36),
Get Previous (7), or Get Previous Extended (37). The Get
operations are useful for traversing a file in a specific order. The
Extended operations are useful for working on a number of
records at one time.

You cannot establish physical currency with one operation and then
follow with an operation that requires logical currency. For example,
you cannot issue a Step First operation and then a Get Next
operation.

In data-only files, the MicroKernel does not maintain or create any
index pages. You can access the records using only the Step
operations and the Get Direct/Record operation (23), all of which
use the physical location to find records.

In key-only files, the MicroKernel does not maintain or create any
data pages. You can access records using only the Get operations,
which use logical currency to find records.

When you have finished working with a file, use the Close operation
(1) to close it. When your application is ready to terminate, issue a
Stop operation (25).

Note Failure to perform a Stop operation prevents the
MicroKernel from returning its resources to the operating
system. This failure eventually results in unpredictable system
behavior, including the possibility of crashing the computer on
which the application is running.
147

Working with Records
Accessing Records
Btrieve provides both physical and logical access to your data. With
physical access, Btrieve retrieves records based on the physical record
address within the file. With logical access, Btrieve retrieves records
based on a key value contained in the record. In addition, Btrieve
also allows you to access “chunks” of data within a record.

Accessing
Records by
Physical
Location

Record accessing by physical location is faster for the following
reasons:

The MicroKernel does not have to use index pages.

The next or previous physical record is usually already in the
MicroKernel’s memory cache because the page on which it
resides is probably in cache.

Physical Currency
Physical currency is the effect on positioning when accessing records
by physical location. When you insert a record, the MicroKernel
writes that record into the first free space available in the file,
regardless of any key values contained in the record. This location is
referred to as the physical location, or address, of the record. The
record remains in this location until you delete it from the file. The
Btrieve Step operations use the physical location to access records.

The record accessed last is the current physical record. The next
physical record is the record with the immediately higher address
relative to the current physical record. The previous physical record
is the record with the immediately lower address. There is no
physical record previous to the first physical record; likewise, there is
no physical record next to the last physical record.

Together, the current, next, and previous physical locations form the
physical currency within a file.

Step Operations
Your application can use the Step operations to access records based
on their physical location within a file. For example, the Step First
operation (33) retrieves the record that is stored in the first, or
lowest, physical location in the file.
148

Accessing Records
Note You cannot perform Step operations on key-only files.

The Step Next operation (24) retrieves the record stored in the next
higher physical location. The Step Previous operation (35) retrieves
the record stored in the next lower physical location in the file. The
Step Last operation (34) retrieves the record that is stored in the last,
or highest, physical location in the file.

The Step Next Extended (38) and Step Previous Extended (39)
operations retrieve one or more records from the physical location
following or preceding the current record.

Note Each of the Step operations re-establishes the physical
currency but destroys the logical currency (even if one existed
before).

Accessing
Records by Key
Value

Accessing records by key value allows you to retrieve records based
on their values for a specified key.

Logical Currency
Logical currency is the effect on positioning when accessing records
by key value. When you insert a record into a file, the MicroKernel
updates each B-tree index for which the appropriate key in the record
has a non-null value. Each key of a file determines a logical ordering
of the records. The ordering is determined by the key’s defined sort
order or ACS.

The record accessed last is the current logical record. (This record is
not necessarily the last record retrieved. The last record could have
been retrieved by the Get Direct/Chunk operation (23), which does
not change the logical currency.) The next logical record is the record
that is immediately next in the defined logical sequence. The previous
logical record is the record that is immediately previous in the
defined logical sequence. There is no logical record previous to the
first logical record; likewise, there is no logical record next to the last
logical record.

Together, the current, next, and previous logical records form the
logical currency within a file.
149

Working with Records
The current logical record is also the current physical record, except
when you perform an operation that uses the no-currency-change
(NCC) option or when you operate on a record with a null key value.
For example, you can perform an NCC Insert operation (2) and have
the same logical position in the file as you had prior to the insert. The
physical currency is updated.

NCC operations are useful when you must preserve your logical
currency in order to perform another operation. For example, you
may want to insert or update a record and then use a Get Next
operation (6) based on your original logical currency.

NCC Insert Operation

status = BTRV(B_GET_FIRST, posBlock, dataBuf,
&dataLen, keyBuf, keyNum); /* gets first record in
key path */

for (i = 0; i < numRecords; i++)
{ status = BTRV(B_INSERT, posBlock, dataBuf,
&dataLen, keyBuf, -1); /* -1 for key num indicates
no currency change */
} /* inserts several records */

status = BTRV(B_GET_NEXT, posBlock, dataBuf,
&dataLen, keyBuf, keyNum); /* gets next record
after first record in key path */

Note When you use an NCC operation, the MicroKernel does
not return any information in the Key Buffer parameter. If you
want to maintain logical currency, you must not change the
value in the Key Buffer following an NCC operation. Otherwise,
your next Get operation can have unpredictable results.

Get Operations
Your application can use the Get operations to retrieve records based
on their values for a specified key. The appropriate Get operation can
retrieve a specific record from a file or retrieve records in a certain
order.

For example, the Get First operation (12) retrieves the first record by
the key specified in the Key Number parameter. Likewise, the Get
Last operation (13) retrieves the last record according to the logical
150

Accessing Records
order based on the specified key. Some Get operations, such as Get
Equal (5) or Get Less Than (10), return a record based on a key value
your application specifies in the Key Buffer parameter.

Get operations establish logical currency. Your
application can change from one key to another by
performing the following procedure:

1 Retrieve a record by issuing one of the Get operations.

2 Issue a Get Position operation (22) to retrieve the 4-byte physical
address of the record.

3 Issue a Get Direct/Record operation (23) and pass to the
MicroKernel the 4-byte physical address and the Key Number to
change.

In addition to establishing logical currency, all Get operations except
Get Position (22) establish the physical currency. As a result, you can
continue with a Step Next (24) or Step Previous (35) operation.
However, using the Step operations destroys the logical currency.

To re-establish logical currency after using a Step
operation, perform the following procedure:

1 Immediately after using a Step operation, issue a Get Position
operation (22) to retrieve the 4-byte physical address of the
retrieved record.

2 Issue a Get Direct/Record operation (23), passing to the
MicroKernel the 4-byte position and the Key Number on which
to establish logical currency.

Reading
Variable-
Length
Records

Reading a variable-length record is the same as reading a fixed-length
record in that you use the Data Buffer Length parameter to tell the
MicroKernel how much room you have for the record to be returned.
Set this parameter to the size of your entire Data Buffer, which can
accommodate the maximum amount of data.

Note Do not set the Data Buffer Length to a value larger than the
number of bytes allocated to your Data Buffer; doing so could
lead to a memory overwrite when running your application.
151

Working with Records
After a successful read operation, the Data Buffer Length parameter
is changed to reflect the size of the returned record, which is the size
of the fixed-length portion plus the amount of actual data in the
variable portion (not the maximum size of a record). Your
application should use this value to determine how much data is in
the Data Buffer.

For example, suppose you have the following records in a data file:

Following are examples of Get Equal operations.

Note While developing and debugging your application, it helps
to display the Data Buffer Length just before and after the read
operation to verify that it is set correctly at each point.

Get Equal Operation in C

/* get the record with key 1= 263512477 using
B_GET_EQUAL */
memset(&dataBuf, 0, sizeof(dataBuf));
dataBufLen = sizeof(dataBuf); /* this should be
1047 */
account = 263512477;
*(BTI_LONG BTI_FAR *)&keyBuf[0] = account;
status = BTRV(B_GET_EQUAL, posBlock, &dataBuf,
&dataBufLen, keyBuf, 1);
/* the dataBufLen should now be 56 */

Get Equal Operation in Visual BASIC

dataBufLen= length(dataBuf) ' this should be 1047
account% = 263512477
status = BTRV(B_GETEQUAL, PosBlock$, dataBuf,
dataBufLen, account%, 1)
' the dataBufLen should now be 56

Key 0: Owner
30-byte
ZSTRING

Key 1:
Account
8-byte
INTEGER

Balance (Not a
Key)
8 bytes

Comments (Not a
Key)
1000 bytes

John Q. Smith 263512477 1024.38 Comments

Matthew Wilson 815728990 644.29 Comments

Eleanor Public 234817031 3259.78 Comments
152

Accessing Records
If the returned record is longer than the value specified by the Data
Buffer Length, the MicroKernel returns as much data as it can
(according to the size the Data Buffer Length was set to) and Status
Code 22.

Accessing
Records by
Chunks

Btrieve’s Data Buffer Length parameter, because it is a 16-bit
unsigned integer, limits the record length to 65,535. Chunk
operations expand the record length well beyond this limit by
allowing you to read or write portions of a record. A chunk is defined
as an offset and length; the offset can be as large as 64 GB, but the
length is limited to 65,535 bytes. The limits that your operating
system and the Data Buffer Length parameter impose also apply to
the chunk operations; however, because the chunk operations can
access any portion of a record, the limits have no effect on record
length, only on the maximum size of a chunk accessible in a single
operation.

For example, using the chunk operations, an application can read a
150,000 byte record by making three chunk retrieval calls. Each
chunk in this example is 50,000 bytes long. The first chunk starts at
offset zero, the next at offset 50,000, and the final at offset 100,000.

A chunk’s offset and length do not have to correspond to any of the
internal structures of a record that are known to the MicroKernel,
such as key segments, the fixed-length portion of a record, or a
variable tail. Also, a chunk does not have to correspond to any
portion of the record that your application defines (for example, a
field), although you may find it useful to update such defined
portions as chunks.

Note Chunks are defined only for the duration of the operation
that defines them.

In some cases, the use of chunk operations in client/server
environments allows the client Requester to use a smaller Data Buffer
Length setting, which lowers the Requester’s memory requirement.
For example, if your application used whole record operations and
accessed records up to 50 KB long, your Requester would have to set
its Data Buffer Length to at least 50 KB, thereby using 50 KB of RAM.
But if your application used chunk operations and limited the size of
each chunk to 10 KB, for example, then the Requester could set its
Data Buffer Length to 10 KB, thereby saving 40 KB of RAM.
153

Working with Records
Intrarecord Currency
Intrarecord currency is relevant in chunk operations, because it
tracks an offset within the current record. The current position is the
offset that is one byte beyond the last byte of the chunk that was read
or written. (This is true even if in your last operation you attempted
to read an entire record and the MicroKernel could return only part
of that record, which can happen when the Data Buffer Length is
inadequate.)

The exception is for an Update Chunk operation (53) that uses the
Truncate subfunction. In this case, the MicroKernel defines the
current position in the truncated record as the offset that is one byte
beyond the end of the record itself.

By tracking intrarecord currency, the MicroKernel can do the
following:

Provide next-in-record subfunction biases for the Chunk
operations.

You specify an original offset, length and number of chunks, and
the MicroKernel calculates the subsequent offsets.

Improve performance in accessing chunks.

Intrarecord currency can speed up any chunk operation, as long
as it operates on the same record that was last accessed by the
Position Block, and as long as the next chunk offset is greater
than the current position in the record. (That is, you do not have
to access the next immediate byte in the record to benefit from
intrarecord currency.)

Note The MicroKernel maintains intrarecord currency only for
the current record. When you change physical or logical
currency, the MicroKernel resets the intrarecord currency, as
well.

Chunk Operations
You access chunks using the Get Direct/Chunk operation (23) and
the Update Chunk operation (53). To use these operations, you must
define a chunk descriptor structure that defines the offset and length
of the chunk. For the Get Direct/Chunk operation, the chunk
154

Accessing Records
descriptor structure must also specify an address to which the
MicroKernel returns the chunk.

Before you can use the Get Direct/Chunk operation, you must
retrieve the physical address of the current record by issuing the Get
Position operation (22). You can use a single Chunk operation to
retrieve or update multiple chunks in a record by using a next-in-
record subfunction bias.
155

Working with Records
Inserting and Updating Records
Most of the time, inserting and updating records is a simple process:
you use the Insert operation (2) or the Update operation (3) and pass
in the record using the Data Buffer. This section discusses some
special cases involving inserts and updates.

Ensuring
Reliability in
Mission-Critical
Inserts and
Updates

While the MicroKernel is an extremely reliable data management
engine, it cannot prevent system failures. System failures are more
common in client/server applications, because network failures can
occur. You can ensure reliability by taking advantage of these
MicroKernel features:

Transaction Durability. Transaction durability ensures that
before the application receives a successful status code from an
End Transaction operation, the changes are already committed
to disk. Transactions are normally used to group multiple
change operations that need to succeed or fail as a group.
However, transaction durability can be useful even for single
operations because the application has control over when the
change is committed to disk.

Consider “wrapping” individual mission-critical insert and
update operations inside Begin Transaction and End
Transaction operations and using the MicroKernel’s Transaction
Durability configuration option. For more information about
the Begin Transaction and End Transaction operations, refer to
the Btrieve API Guide. For more information about transaction
durability, refer to Transaction Durability.

Note When you open a file in Accelerated mode, the
MicroKernel does not perform transaction logging on the file.
That is, operations performed on a file opened in Accelerated
mode are not transaction durable.

System Transaction Frequency. An alternative to using
Transaction Durability is to use the MicroKernel’s Operation
Bundle Limit and Initiation Time Limit to control the frequency
of system transactions. For each open file, the MicroKernel
bundles a set of operations into a single system transaction. If a
156

Inserting and Updating Records
system failure occurs, all changes made before the current system
transaction completes are lost; however, the file is restored to a
consistent state, enabling the operations to be attempted again
after resolving the cause of the system failure.

If you set both the Operation Bundle Limit and Initiation Time
Limit to 1, the MicroKernel commits each operation as a
separate system transaction. Doing so decreases performance, so
this method is useful only for applications that can accept a
performance decrease. One way to determine this is to measure
the CPU utilization while your application runs. Applications
that utilize 50 to 100 percent of the CPU are not good candidates
for this approach.

Inserting Non-
Duplicatable
Keys

If you are inserting a record with a key value that may already exist
and for which you do not allow duplicates, you can proceed in one
of two ways:

Perform an Insert operation (2). If the MicroKernel returns
Status Code 5, then the key value does exist, and you cannot
perform the insert.

Perform a Get Equal operation with a Get Key bias (55). If the
MicroKernel returns Status Code 4, then the key value does not
already exist, and you can perform the insert.

If your Insert operation stands alone and does not depend on logical
currency in the file, executing a Get Equal prior to each Insert is an
additional overhead. However, for a group of inserts, the Get Equal
operation facilitates any subsequent Insert operations by fetching
into memory the index pages that point to the key location.

Inserting and
Updating
Variable-
Length
Records

When designing a variable-length data file, you must decide the
maximum size of the variable-length portion of the record your
application will support. You should set up a record structure that
accommodates the fixed-length portion plus the maximum size of
the variable portion. Use this structure as the Data Buffer when
reading, inserting, and updating your variable-length records.

When inserting or updating a variable-length record, you use the
Data Buffer Length parameter to tell the MicroKernel how much
data to write. Set this parameter to the size of the fixed-length
portion plus the amount of real data in the variable portion. Do not
set the Data Buffer Length to the fixed length plus the maximum size
157

Working with Records
your application allows for the variable field; if you do, the
MicroKernel will always write the maximum size.

For example, suppose you want to insert the following record.

Following are examples of Insert operations. Note that the Data
Buffer Length is computed as the fixed-length portion plus the
amount of data in the Comments field (8 bytes), not the maximum
size of the Comments field (1,000 bytes).

Insert Operation

#define MAX_COMMENT 1000 /* Largest variable
comment size */
typedef struct
{ char owner[30];
 int number;
 int balance;
} FixedData;
typedef struct
{ FixedData fix;
 char variable[MAX_COMMENT];
} DataBuffer;

 DataBuffer account;
 BTI_ULONG dataBufLen;
 BTI_SINT status;

 strcpy(account.fix.owner, "John Q. Smith");
 account.fix.number = 263512477;
 account.fix.balance = 102438;
 strcpy (account.variable, “Comments”);
 dataBufLen = sizeof(FixedData) +
strlen(account.variable) +1;
 /* the +1 accommodates the null character after
the data */
 status = BTRV(B_INSERT, PosBlock, &account,
&dataBufLen,

keyBuffer, 0);

Key 0: Owner
30-byte
ZSTRING

Key 1: Account
8-byte
INTEGER

Balance (Not a
Key)
8 bytes

Comments (Not a
Key)
1,000 bytes

John Q. Smith 263512477 1024.38 Comments
158

Inserting and Updating Records
Reading and
Updating Fixed-
length Portions

It is possible to read only the fixed-length portion of a record by
setting the data buffer size to that fixed length. The MicroKernel
returns only the fixed-length portion and Status Code 22. However,
if you then use the Update operation and pass in only the fixed-
length portion, the variable-length portion is lost. Instead, use the
Update Chunk operation (53), which updates any part of a record,
based on a byte offset and length. Set the byte offset to 0 and the
length to the length of the fixed-length portion. This operation
updates the fixed-length portion and retains the variable-length
portion.

Updating Non-
Modifiable
Keys

If you attempt to update a key value that is defined as not modifiable,
the MicroKernel returns Status Code 10. If you want to update the
key value anyway, you must first Delete (4) the record and then Insert
(2) it.

No-Currency-
Change (NCC)
Operations

You can perform a variation on the standard Insert or Update, called
a no-currency-change (NCC) operation, by passing in a -1 (0xFF)
for the Key Number parameter. NCC operations are useful when an
application must save its original logical position in a file in order to
perform another operation, such as a Get Next operation (6).

To achieve the same effect without an NCC Insert operation, you
would have to execute these steps:

1 Get Position (22)—Obtain the 4-byte physical address for the
logical current record. You would save this value for use in Step
3.

2 Insert (2)—Insert the new record. This operation establishes
new logical and physical currencies.

3 Get Direct/Record (23)—Re-establish logical and physical
currencies as they were in Step 1.

The NCC Insert operation has the same effect as a standard Insert in
terms of logical currency, but can have a different effect in terms of
physical currency. For example, executing a Get Next (6) operation
after either procedure produces the same result, but executing a Step
Next (24) might return different records.

To maintain original positioning without an NCC Update operation,
you would have to execute these steps:

1 Get Next (6)—Establish the next logical record.
159

Working with Records
2 Get Position (22)—Obtain the 4-byte physical address for the
next logical record. You would save this value for use in Step 8

3 Get Previous (7)—Re-establish the current logical record.

4 Get Previous (7)—Establish the previous logical record.

5 Get Position (22)—Obtain the 4-byte physical address for the
previous logical record. You would save this value for use in Step
8

6 Get Next (6)—Re-establish the current logical record.

7 Update (3)—Update the affected record. If this standard Update
operation changes the specified key’s value, it also establishes
new logical currency.

8 Get Direct/Record (23)—Establish the currencies to the record
that preceded or followed the record updated in Step 7 If your
application is to continue searching forward, you would pass to
the Get Direct/Record operation the address saved in Step 2. If
the application is to continue searching backward, you would
pass the address saved in Step 5.
160

Multi-Record Operations
Multi-Record Operations
Pervasive PSQL provides a high performance mechanism for
filtering and returning multiple records or portions of multiple
records. The mechanism is called “extended operations” and is
supported by four specific operation codes:

Get Next Extended (36)

Get Prev Extended (37)

Step Next Extended (38)

Step Prev Extended (39)

For detailed information on how to code these operations, see
Btrieve API Guide. This section explains how to optimize your use of
these operations for best performance.

Terminology The following words can have other meanings in other contexts. For
the purposes of this section, definitions are provided below.

Descriptor
Also called the Extended Expression. The whole contents of the data
buffer which describes how the Btrieve extended operation should
be accomplished.

Filter
A portion of the Extended Expression which describes a selection
criteria to apply to the records being selected.

Condition
A portion of a filter that uses a single logical operator.

Connector
A Boolean operator that connects a condition to what follows it.
Either AND, OR, or NONE

Extractor
A portion of the Extended Expression which defines what data to
return.

Key
A whole index definition which may have multiple segments. Get
operations require the MicroKernel to move through the data file
along a single key path.
161

Working with Records
Key Segment
Compound indices, also called multi-segmented keys, can have
multiple segment definitions. Each segment defines an offset,
length, data type, and so on.

Background The filter evaluation mechanism for extended operations is designed
to be very fast. It evaluates expressions in a straightforward manner
without doing any extra processing. Because of this approach, you
should be aware of some of the idiosyncracies of the interface.

Extended operations do not establish initial positioning. They
only move forward or reverse from the current position. So in
order to find all records where (lastname = 'Jones' AND
firstname = 'Tom' AND city = 'LasVegas') your application must
perform a Get Equal operation before performing a Get Next
Extended operation.

Filter evaluation is strictly left to right. For example, your
application cannot perform a single extended operations that
will get all records where (Age = 32 AND Gender = "M") OR
(Age = 30 AND Gender = "F").

This kind of search must jump around the file somewhat in
order to be most efficient, but extended operations do not jump
around. They move along a logical key or record path one record
at a time. A compound logical expression such as the one above
would require an optimizer like the one in the SQL Relational
Database Engine (SRDE) that is part of Pervasive PSQL. Instead,
the MicroKernel evaluates expressions left to right to make the
filter evaluation process as fast as possible.

To do the search above, the caller must make two Get Extended
calls, each after first performing a GetEqual operation to
position the cursor to the first record. If you use the four
conditions from the example above in an extended operation, it
would be evaluated like (Age = 32 AND (Sex = "M" OR (Age =
30 AND Sex = "F"))). In other words, for each record, the
MicroKernel evaluates the first condition, then looks at the
Boolean operator to determine whether it must evaluate the next
condition. If the first condition is false, the AND operator means
the whole expression is false.
162

Multi-Record Operations
Validation There are many ways by which an extended operation can return a
status 62 (Invalid Descriptor). Below is a list of some of the most
common:

Descriptor length is not long enough. This depends on the
number of filter conditions, the length of each condition value
and what, if any, ACSs or ISRs they use, and the number of fields
to extract.

Data Buffer: Length must be at least long enough to contain the
full descriptor.

Each condition must have a valid data type. It must be one of the
valid Btrieve key types.

Flags used on the comparison code must be valid,
(FILTER_NON_CASE_SENSITIVE, FILTER_BY_ACS,
FILTER_BY_NAMED_ACS), and can only be used with string
type fields (STRING_TYPE, LSTRING_TYPE,
ZSTRING_TYPE, WSTRING_TYPE, WZSTRING_TYPE,

Must be a valid comparison code, (1-6).

Must be a valid connector, (0-2).

Any ACS of ISR referenced must be pre-defined.

The last filter condition needs a terminator (connector must be
0).

All other filter condition can not have a terminator (connector
must be 1 or 2).

The extractor record count may not be zero.

Optimization Optimizing an extended operation means that the MicroKernel can
stop looking at records along the current key path because there is no
possibility that records remaining on the key path can satisfy the
filter. Starting with Pervasive PSQL 2000i SP3, the MicroKernel can
optimize on multiple conditions as long as they occur sequentially
and match the segments of the current key.

As it evaluates each condition, the MicroKernel determines if the
given segment can be optimized. In order to do that, all the following
must be true:

Must be a Get Extended operation (36 & 37), not a Step
Extended operation (38 & 39).
163

Working with Records
Optimization must not have been turned off for remaining
segments because of a matching record found when evaluating a
previous segment.

An OR connector makes the current condition and any
following condition un-optimizable, since the expression is
evaluated left to right.

The condition must refer to the same offset in the record as the
current key segment.

The condition must

refer to the same field length in the record as the current key
segment,

OR be a substring of the key if the data type is one of the
string types.

The condition must refer to the same field type as the key.

The condition must not be comparing a field with another field
in the record.(FILTER_BY_FIELD)

The condition must have the same case sensitivity as the key.

The condition must have the same ACS or ISR specification as
the key if the data type is one of the string types.

The logical operator must be EQ (=) unless the condition is
being optimized to the first key segment.

For the first key segment, the logical operator can also be LT or
LE (< or <=) if the direction is forward, and GT or GE (> or >=)
if the direction is reverse. For these logical operators, only one
filter condition will be optimized.

The actual direction is dependent on both the direction indicated by
the operation, but also on whether the current key is descending or
ascending.

Any one of the following can cause optimization to be turned off for
all future segments.

If the key has no more segments to optimize to.

Table 33 Actual Direction of Extended Operation

Ascending Key Segment Descending Key Segment

Get/Step Next Ascending/Forward Descending/Reverse

Get/Step Prev Descending/Reverse Ascending/Forward
164

Multi-Record Operations
If the current condition has an OR connector.

If the current condition IS optimized, but is a sub-string of the
associated key segment.

If the current condition IS optimized, but the logical operator is
not EQ (=).

If the current condition failed to optimize and the previous
condition was optimized. This means that if a bunch of
conditions are ANDed together, the first optimizing condition,
the one that matched the first key segment, does NOT have to be
the first condition in the filter. But once a condition is found that
CAN be optimized to the first key segment, the other optimizing
conditions must occur sequentially and immediately following
that first optimizing condition.

Note There is a defect in Pervasive PSQL 2000i SP3 that requires
the optimizable conditions to occur first in the filter. Thus, the
ability to put non-optimizable conditions before the optimizable
conditions is only available after SP3. This ability was available
before SP3, but only one condition could be optimized.

Examples
The examples below refer to the following sample data:

Table 34 Sample Data for Multi-record Operations

Record Field 1 Field 2 Field 3 Field 4

1 AAA AAA AAA XXX

2 AAA BBB BBB OOO

3 AAA CCC CCC XXX

4 BBB AAA AAA OOO

5 BBB AAA BBB XXX

6 BBB AAA CCC OOO

7 BBB BBB AAA XXX

8 BBB BBB BBB OOO

9 BBB BBB CCC XXX
165

Working with Records
Consider the table above, which has a compound key on fields 1, 2
and 3 in that order. Assume that the application performs a GetFirst
operation on this file using this three-segment key, followed up with
a GetNextExtended operation. Notice that these examples contain
parentheses where they are assumed to be. This is the only way
parentheses can occur when the filter is evaluated from left to right.

Remember that in order to optimize against a key segment, the
offset, length, type, Case, & ACS identified in the filter condition all
must be the same as the key definition.

(Field1 = AAA AND (Field2 = AAA AND (Field3 = AAA)))
The MKDE retrieves record 1 and stops searching with status 64
(Optimization limit exceeded). The last record examined that
satisfies the optimization criteria is record 1 which becomes the
current record. Engines before Pervasive.SQL 2000 SP3 can
optimize only one condition and thus leave the current record at
record 3.

(Field1 = AAA OR (Field2 = AAA OR (Field3 = AAA)))
The MKDE retrieves records 1, 2, 3, 4, 5, 6, 7, 10, 13 & 14 and returns
with status 9 (End of file reached). No condition can be optimized
since the first condition contains an OR connector. The current
record becomes record 14.

(Field1 = BBB AND (Field2 = BBB OR (Field3 = BBB)))
The MKDE would retrieve records 5, 7, 8, 9 & 11 and return with
status 64. The first condition was optimized, but the second
condition was not since it contained an OR connector. The last
record examined that satisfies the optimization criteria is record 12
which becomes the current record.

10 BBB CCC AAA OOO

11 BBB CCC BBB XXX

12 BBB CCC CCC OOO

13 CCC AAA CCC XXX

14 CCC CCC AAA OOO

Table 34 Sample Data for Multi-record Operations

Record Field 1 Field 2 Field 3 Field 4
166

Multi-Record Operations
(Field4 = OOO AND (Field2 = BBB AND (Field3 = BBB)))
The MKDE retrieves records 2 & 8 and return with status 9. No
condition can be optimized to the first key segment, so the following
segments cannot be optimized. The current record becomes record
14.

(Field1 = BBB AND (first byte of Field2 = B AND (Field3 = BBB)))
The MKDE retrieves record 8 and returns with status 64. The first
two conditions can be optimized, but since the second condition is a
substring, the third condition cannot be optimized. The last record
examined that satisfies the optimization criteria is record 9. Engines
prior to Pervasive.SQL 2000 SP3 can optimize only one condition
and thus return with record 12 as the current record.

(Field1 = BBB AND (Field2 = Field3))
This is done by using the +64 bias on the comparison code, which
indicates that the second operand is another field of the record,
rather than a constant. The MKDE retrieves records 4, 8 & 12 and
returns with status 64. The first condition can be optimized, but
since the second condition does not compare to a constant, it cannot
be optimized. The last record examined that satisfies the
optimization criteria is record 12.

(Field1<= BBB AND (Field2 <= BBB AND (Field3 <= BBB)))
The MKDE retrieves records 1, 2, 4, 5, 7, & 8 and returns with status
64. The first condition can be optimized, but since it does not have
a logical operator of EQ, the following conditions cannot be
optimized. The last record examined that satisfies the optimization
criteria is record 12.

(Field1= BBB AND (Field2 < BBB AND (Field3 < BBB)))
The MKDE retrieves record 4 and returns with status 64. The first
condition can be optimized, but since the second condition does not
have a logical operator of EQ, it cannot be optimized. The last record
examined that satisfies the optimization criteria would be record 12.

(Field1= BBB AND (Field2 = BBB AND (Field3 < BBB)))
The MKDE retrieves record 7 and returns with status 64. The first
two conditions can be optimized because they use EQ, but the third
condition cannot. The last record examined that satisfies the
optimization criteria is record 9. Engines prior to Pervasive.SQL
2000 SP3 can optimize on only one condition and so the current
record would be 12.
167

Working with Records
(Field2>= AAA AND (Field2 <= BBB AND (Field1 >= AAA) AND
(Field1 <= BBB))))
The MKDE retrieves records 1, 2, 4, 5, 6, 7, 8 & 9 and returns with
status 64. The first three conditions cannot be optimized to the first
key segment, but since they are all ANDed together, the fourth
condition can be used to optimize the search. The second condition
would be optimizable if it occurred immediately after the fourth
condition. But since it is out of position relative to the key segments,
it cannot be optimized. Since only one key segment is optimized, the
last record examined that satisfies the optimization criteria would be
record 12. Note that there is a defect in Pervasive.SQL 2000 SP3 that
prevents optimization unless the optimizable condition occurs first.
So the SP3 engine would retrieve the same records, but would return
status 9.

Performance
Tips

This section provides some information on how to speed up your
operations.

Connectors
Since extended operations evaluate logical expressions left to right,
this feature is by no means a complete expression evaluator that can
be used to extract whatever data you want in the most efficient
manner. Extended operations are designed to be used in conjunction
with a Get or Step operation to initially set the cursor in the file to
the correct position. So the first suggestion is:

do not try to mix AND and OR connectors in the same filter. If
you do, put the AND conditions up front to match the segments
of the key, so that at least the engine can optimize the search to a
shorter portion of the key path.

In other words, it may be appropriate to add some OR’ed conditions
for fields not in the index after an optimizable condition for an
indexed field. For example, let say you are searching a nationwide
phone book for everyone in Texas with first name "William", "Bill",
"Billy" or "Billybob". Using a key on the State field, you would use
GetEqual to set the current record on the first person in Texas. Then
call GetNextExtended with a filter like (State = "Texas" AND
(FirstName = "William" OR (FirstName = "Bill" OR (FirstName =
"Billy" OR (FirstName = "Billybob"))))). If your Extractor indicated
a reject count of 10,000 and a return count of 100 records, the
GetNextExtended would return after looking at about 10,000
168

Multi-Record Operations
records. But with 14 million people in Texas, you will need to keep
issuing the same GetNextExtended operation over and over until you
finally get to Utah and a status 64 (Optimization Limit exceeded).
This process would be much faster than having each record
transferred to your application one at a time.

But what if a compound index existed on State and FirstName? The
GetNextExtended above would still work, but it would be much
faster to do a GetEqual and GetNextExtended on each of the four
State & FirstName combinations, optimizing on both fields.

So you can see that having filters with OR connectors is only useful
when no index is available. Priority should be placed on AND
connectors for fields that match the key.

Reject Count
Another issue that you should understand is how to set the reject
count. If your application is the only one being serviced by a
MicroKernel engine, then using the maximum reject count is most
efficient since it keeps that network traffic or inter-process
communication to a minimum. However, if there are a lot of
applications running in a highly concurrent environment, there can
be serious consequences if you have a reject count that is too large.

The MicroKernel can handle many Btrieve requests concurrently
even while doing Btrieve operations atomically on a file. So it allows
any number of reader threads, but only one write thread, to access
the same file. Most Btrieve operations are read operations and they
do not take much time to accomplish. So if a write operation comes
in, it waits until all readers are finished before it locks the file for the
instant it takes to insert, update, or delete a record. This coordination
works great until a read operation comes in that takes a long time to
finish. That is what an extended operation with a high reject count
will do if it does not find any records. It keeps reading and reading
and reading. The other read operation can get done without a
problem, but the write operations start to back up. After a write
operation has tried to get write access to the file 100 times, it reaches
what is called a frustration count. At this time, it puts a block on all
new reader threads. So now all Btrieve operations on this file are
hung until the extended operation is done.
169

Working with Records
For this reason, if your application is used in a highly concurrent
environment, use a reject count that is somewhere between 100
and 1000. Also try to make your extended operations
optimizable so that the MicroKernel does not have to read and
reject records very often.

Even with a reject count of 100 to 1000, it is better to have the
MicroKernel read and reject them than it is to have the records
returned to your application to reject them.
170

Adding and Dropping Keys
Adding and Dropping Keys
Btrieve provides two operations for adding and dropping keys in
your files: Create Index (31) and Drop Index (32). The Create Index
operation is useful for adding keys to a file after the file has been
created. The Drop Index operation is useful for removing keys whose
index pages have become damaged. After dropping a key, you can re-
add it, which causes the MicroKernel to rebuild the index.

When you drop a key, the MicroKernel renumbers all higher-
numbered keys, unless you specify otherwise. The MicroKernel
renumbers the keys by decrementing all higher-numbered keys by 1.
For example, suppose you have a file with key numbers 1, 4, and 7. If
you drop key 4, the MicroKernel renumbers the keys as 1 and 6.

If you do not want the MicroKernel to automatically renumber keys,
add a bias of 0x80 to the value you supply for the Key Number
parameter. This allows you to leave gaps in the key numbering;
consequently, you can drop a damaged key and then rebuild it
without affecting the numbering of other keys in the file. You rebuild
the index using the Create Index operation (31), which allows you to
specify a key number.

Note If you dropped a key without renumbering and a user then
cloned the affected file without assigning specific key numbers,
the cloned file would have different key numbers than the
original.
171

Working with Records
172

c h a p t e r
9
Supporting Multiple Clients
This chapter discusses the following topics:

Btrieve Clients

Passive Concurrency

Record Locking

User Transactions

Examples of Multiple Concurrency Control

Concurrency Control for Multiple Position Blocks

Multiple Position Blocks

ClientID Parameter
173

Supporting Multiple Clients
Btrieve Clients
A Btrieve client is an application-defined entity that makes Btrieve
calls. Each client can make Btrieve calls and has its own resources
(such as files) that are registered with the MicroKernel. In addition,
the MicroKernel maintains the status of transactions (both exclusive
and concurrent) on a per-client basis.

When you need to support multiple clients concurrently, use the
BTRVID or BTRCALLID function, which includes a Client ID
parameter. The Client ID parameter is the address of a 16-byte
structure that allows the MicroKernel to differentiate among the
clients on a computer. Following are examples of situations in which
using a Client ID might be useful:

You write a multi-threaded application that conducts several
transactions, all in progress at the same time. For each Begin
Transaction operation, the application specifies a different
Client ID. The MicroKernel maintains separate transaction
states for each Client ID.

You write an application that uses two Client IDs, and for each
Client ID, opens several files. Your application can execute a
Reset operation using BTRVID, BTRCALLID, or
BTRCALLID32, causing the MicroKernel to close the files and
free the resources for a single specified Client ID.

You write an application that allows multiple instances of itself
to run simultaneously. For the integrity of your application’s
data, all instances must appear to the MicroKernel as a single
client. In this situation, your application provides the same
Client ID parameter on each Btrieve call, regardless of which
instance of the application is making that call.

You write an application that acts as a Dynamic Data Exchange
(DDE) server. Your server application, which makes Btrieve
calls, must divide the returned information between the
applications originating the requests to your server application.
In this situation, your application can assign a different Client ID
to each requesting application, providing a way to track
information to be distributed among several clients.

The MicroKernel provides several concurrency control methods and
uses several implementation tools to resolve conflicts that can occur
174

Btrieve Clients
when multiple clients attempt to access or modify records in the
same file concurrently.

The concurrency control methods are as follows:

Passive Concurrency (page 9-179)

Record Locking (page 9-181)

User Transactions (page 9-182)

The implementation tools are as follows:

Explicit Record Locks

Implicit Record Locks

Implicit Page Locks

File Locks

The following sections discuss the MicroKernel’s concurrency
control methods in detail. While reading each of the sections, refer to
Table 35. This table summarizes the types of conflicts that can occur
when two clients attempt to access or modify the same file. Table 35
describes the actions of local clients.

Note If your application uses the BTRVID function to define
and manage multiple clients within the same application, such
clients are considered local clients.

In both tables, client 1 performs an action identified by an
abbreviation in the far-left column of the table, and then client 2
attempts to perform one of the actions identified by an abbreviation
in the top row of the table.

The actions represented by the abbreviations are described in Action
Codes.

Assumptions

Table 35 assumes the following:

For a specific cell of the table, client 2 attempts to perform an
action after client 1 starts performing an action. The first action
must finish before the second action can start.

For any cell in which client 2 performs an update or delete
operation, client 2 is assumed to have read the affected record
before client 1 performs its action.
175

Supporting Multiple Clients
Unless explicitly stated in the action description for client 2 (as
in actions MDR and MTDR), clients 1 and 2 always perform
their actions on the same record, when both operations are reads
or when both operations are updates or deletes.

Unless explicitly stated in the action description for client 2 (see
action ITDP), when both client 1 and client 2 perform an insert,
update, or delete operation, both clients change at least one of
the pages they have in common.

When client 2 performs a modification following an insert
operation by client 1, the modified record is not the inserted
record, although both records share one or more data, index, or
variable pages in the file.

Action Codes

RNL Read without lock request, either non-transactional or in a concurrent
transaction.

RWL Read with lock request, either non-transactional or in a concurrent
transaction.

INT Insert, non-transactional.

ICT Insert in a concurrent transaction.

ITDP Insert in a concurrent transaction, changing different pages than those
modified by an insert, update, or delete by client 1, who is also in a
concurrent transaction.

MNT Modify (update or delete), non-transactional.

MDR Modify (non-transactional) a different record than the one modified by
client 1.

MCT Modify in concurrent transaction.

MTDR Modify (in concurrent transaction) a different record than the one
modified by client 1.

EXT Read, insert, or modify in exclusive transaction.
176

Btrieve Clients
Conflict Codes

For conflict codes RB, PB, and FB, the MicroKernel retries client 2’s
action unless client 2 has specified a no-wait type operation (for
example, a read with a no-wait lock or an insert/modify in a
concurrent transaction that was started with a 500 bias). For a no-
wait operation, the MicroKernel returns an error status code.

N/A Not applicable.

NC No conflict or blocking between the actions of client 1 and client 2.

RB Record-level blocking. Client 2 is blocked because of a record lock held by
client 1.

PB Page-level blocking. Client 2 is blocked because of a page lock held by
client 1.

FB File-level blocking. Client 2 is blocked because of a file lock held by client
1.

RC Record conflict. Client 2 cannot execute the operation because the record
has been modified by client 1 in the time since client 2 originally read the
record. The MicroKernel returns Status Code 80.

Table 35 Possible File Operation Conflicts Involving Local Clients

Client 2 Action

RNL RWL INT ICT ITDP MNT MDR MCT MTDR EXT

Client
Action

RNL NC NC NC NC N/A NC N/A NC N/A NC

RWL NC RB NC NC N/A RB N/A RB N/A RB

INT NC NC NC NC N/A NC N/A NC N/A NC

ICT NC NC PB PB NC PB N/A PB N/A PB

MNT NC NC NC NC N/A RC NC RC NC NC

MCT NC RB PB PB NC RB PB RB PB PB

EXT NC FB FB FB N/A FB FB FB FB FB
177

Supporting Multiple Clients
Following are examples for interpreting action code combinations in
Table 35:

Combination EXT-RWL: Client 1 reads a record from the file
from within an exclusive transaction. Client 2 receives Status
Code 85 (FB, file-level blocking) when it tries to read a record
from the file with a no-wait lock bias in a non-transactional
mode. If client 2 specifies a wait lock bias, the MicroKernel
retries the operation.

Combination ICT-ICT: Client 1 inserts a record from within a
concurrent transaction. The MicroKernel retries the operation
when client 2 attempts to insert a record into the same file,
because one of the pages to be modified by the operation has
already been changed by the insert operation performed by
client 1. If client 2 starts the concurrent transaction with a 500
bias, the MicroKernel returns Status Code 84. (See the
Assumptions (page 9-175) concerning this table.)

Combination ICT-ITDP: This combination resembles ICT-ICT,
except that client 2 does not change any page that has already
been modified by client 1. In this case, the operation attempted
by client 2 is successful (NC, no blocking, no conflict).

Combination MCT-MTDR: Although client 1 and client 2
modify different records, client 2 is blocked by a page lock. This
blockage results because the records being modified share a data
page, index page, or variable page in the file. (See the
Assumptions (page 9-175) concerning this table.)
178

Passive Concurrency
Passive Concurrency
You may choose to rely on passive concurrency for resolving update
conflicts if your application performs single-record read and update
operations while not inside a transaction or from within a
concurrent transaction. Passive concurrency is applied automatically
by the MicroKernel; it requires no explicit instructions from the
application or the user.

With passive concurrency, the MicroKernel allows a client to read a
record without applying any lock bias for the operation; if a second
client changes the record between the time the first client reads it and
the time the first client attempts to update or delete it, the
MicroKernel returns Status Code 80. In this situation, the
modification that the first client initiates is based on an outdated
image of the record. Therefore, the first client must read the record
again before performing the update or delete operation.

Passive concurrency allows developers to move applications directly
from a single-user to a multi-user environment with only minor
modifications.

Table 36 and Table 37 show how two clients interact when using
passive concurrency: non-transactionally and from within a
concurrent transaction.

Table 36 Passive Concurrency (Non-transactional Example)

Client 1 Client 2

1. Open file.

2. Open file.

3. Read record A.

4. Read record A.

5. Update record A.

6. Update record A. The MicroKernel
returns Status Code 80.

7. Reread record A.

8. Update record A.
179

Supporting Multiple Clients
Note Even though client 2 reads record A after client 1 has
already executed the update operation, the MicroKernel
correctly detects a conflict error in Step 7. This conflict exists
because client 1 does not commit the change it made to record A
until ending its transaction in Step 6. By the time client 2
attempts its update in Step 7, the image it read of record A (in
Step 5) is outdated.

Table 37 Passive Concurrency (Concurrent Transaction Example)

Client 1 Client 2

1. Begin concurrent transaction.

2. Begin concurrent transaction.

3. Read record A.

4. Update record A.

5. Read record A.

6. End transaction.

7. Update record A. The MicroKernel
returns conflict status code.

8. Reread record A.

9. Update record A.

10. End transaction.
180

Record Locking
Record Locking
In many situations, a client might want stronger concurrency control
than passive concurrency provides. Thus, the MicroKernel allows a
client to ensure that the client can update or delete certain records
without getting a conflict error (Status Code 80, an indication that
another client has modified the record after this application read it).
To achieve this, the client must read the record with a lock request. If
the MicroKernel grants the lock, no other client can lock, update, or
delete the record until the client that holds the lock releases it.

Thus, the ability to update or delete the record is guaranteed, even if
in some cases the client has to wait because the operation is
temporarily blocked. (For example, temporary blocking can occur
when another record on the same data page as the client’s record is
modified by another application in a concurrent transaction still in
progress.)

There are various kinds of record locks a client can explicitly request.
For more information, refer to Locks.
181

Supporting Multiple Clients
User Transactions
Transactions reduce the possibility of lost data. If you have a number
of modifications to make to a file and you must be sure that either all
or none of those modifications are made, include the operations for
making those modifications in a transaction. By defining explicit
transactions, you can force the MicroKernel to treat multiple Btrieve
operations as an atomic unit. To include a group of operations
within a transaction, you enclose those operations between a Begin
Transaction operation (19) and an End Transaction operation (20).

The MicroKernel provides two types of transactions: exclusive and
concurrent. The type you use depends on how severely you want to
restrict other clients’ access to the file you are modifying. (The
MicroKernel does not allow other applications or clients to see the
changes involved in any transaction (exclusive or concurrent) until
the transaction ends.)

When a task operates on a file inside an exclusive transaction, the
MicroKernel locks the entire file for the duration of the transaction.
Once a file is locked in an exclusive transaction, other non-
transactional clients can read the file, but they cannot make changes
to it. Another client that is also in an exclusive transaction cannot
perform any operations that require a position block on the file
(even standard Get or Step operations), until the first client unlocks
the file by finishing the transaction.

When an application operates on a file inside a concurrent
transaction, the MicroKernel locks only the affected records and
pages in the file, as follows:

The MicroKernel locks one or more records in a Get or Step
operation if that operation has been specifically called with a
read lock bias or if that operation has inherited a read lock bias
from the Begin Transaction operation. (See Locks for
information about locks and lock biases.)

The MicroKernel locks records on a data page being modified in
an Insert, Update, or Delete operation. Additionally, if the record
is a variable-length record, the MicroKernel locks all the variable
pages containing portions of the record. Finally, the MicroKernel
locks entries on any index pages that will be modified as a result
of the Insert, Update, or Delete operation. A small percentage of
182

User Transactions
index page changes may cause entries to move from one page to
another. An example is when an index page is split or combined.
These changes will result in a full page lock on the index page
until the transaction is completed.

As with exclusive transactions, other tasks can always read data that
is locked from within a concurrent transaction. In any data file,
multiple tasks can have their own concurrent transactions operating,
in which they are performing Insert, Update, or Delete operations, or
in which they are performing Get or Step operations that contain
read lock biases. The only restriction on these activities is that no two
tasks can lock the same record or page simultaneously from their
respective concurrent transactions.

The following additional features apply to concurrent transactions:

Locked pages remain locked for the duration of the transaction.

If the transaction simply reads a record, the MicroKernel does
not lock either the record or the corresponding page.

Other clients cannot see the changes to a file in a concurrent
transaction until the transaction ends.

Locks Records, pages, or even an entire file can be locked. Once locked, a
record, page, or file cannot be modified by any client other than the
one responsible for the lock. Similarly, locks owned by one client can
prevent record, page, or file locking by another client, as explained in
the rest of this section.

The MicroKernel provides two kinds of locks: explicit and implicit.
When a client specifically requests the lock by including the lock
request with a Btrieve operation code, that lock is called an explicit
lock. However, even when a client does not explicitly request a lock,
the MicroKernel may lock an affected record or page as the result of
an action that the client performs. In this situation, the lock that the
MicroKernel makes is called an implicit lock (see Implicit Record
Locks and Implicit Locks).

Note Unless otherwise noted, the term record lock refers to an
explicit record lock.

Records can be locked implicitly or explicitly. Pages can be locked
only implicitly. Files can be locked only explicitly.
183

Supporting Multiple Clients
The rest of this section discusses the various locks as they apply in
both non-transactional and transactional environments.

Explicit Record Locks in a Non-Transactional
Environment
This section discusses explicit record locks in a non-transactional
environment. For information about how transactions affect the use
of record locks, refer to Record Locks in Concurrent Transactions.

A client might not want to rely on passive concurrency. However,
that same client might need to ensure that any record it reads can
later be updated or deleted without receiving Status Code 80 (which
would require the client to reread the record). A client can comply
with both these requirements by requesting an explicit record lock
on the record. For your application to lock a record when reading it,
you can add one of the following bias values to the appropriate
Btrieve Get or Step operation code:

100—Single wait record lock.

200—Single no-wait record lock.

300—Multiple wait record lock.

400—Multiple no-wait record lock.

You can only apply these lock biases to Get and Step operations. You
cannot specify a lock bias on any other operations in a non-
transactional environment.

Note Single-record locks and multiple-record locks are
incompatible; therefore, a client cannot hold both types of locks
simultaneously on the same position block (or cursor) in a file.

Single-Record Locks
A single-record lock allows a client to lock only one record at a time.
When a client successfully locks a record with a single-record lock,
that lock remains in effect until the client completes one of the
following events:

Updates or deletes the locked record.

Locks another record in the file (using a single-record lock).

Explicitly unlocks the record using the Unlock operation (27).
184

User Transactions
Closes the file.

Closes all open files by issuing a Reset operation (28).

Obtains a file lock during an exclusive transaction.

When a client locks a record, no other client can perform any
Update (3) or Delete (4) operations on that record. However, other
clients can still read the record using a Get or Step operation, as long
as the Get or Step operation adheres to the following conditions:

Contains no explicit lock bias.

Is not performed from within a transaction that would cause the
record to be locked when it is read (as in an exclusive transaction,
where the MicroKernel locks the entire file, or in a concurrent
transaction that was begun with a lock bias). For more
information, refer to Record Locks in Concurrent Transactions
and File Locks.

Multiple-Record Locks
A multiple-record lock allows a client to lock several records
concurrently in the same file. When a client successfully locks one or
more records with multiple-record locks, those locks remain in effect
until the client completes one or more of the following events:

Deletes the locked record(s).

Explicitly unlocks the record(s) using the Unlock operation (27).

Closes the file.

Closes all open files by issuing a Reset operation (28).

Obtains a file lock during an exclusive transaction.

Note An Update operation does not release a multiple-record
lock.

As with a single-record lock, when a client locks one or more records
using a multiple-record lock, no other client can perform any
Update (3) or Delete (4) operations on those records. Other clients
can still read any of the locked records using a Get or Step operation,
as described in Locks.
185

Supporting Multiple Clients
When a Record Has Already Been Locked
When your client requests a no-wait lock on a record that is currently
not available (either the record is locked by another client or the
whole file is locked by an exclusive transaction), the MicroKernel
returns either Status Code 84 (Record/Page Locked) or Status Code
85 (File Locked). When your client requests a wait lock and the
record is currently not available, the MicroKernel retries the
operation.

Record Locks
in Concurrent
Transactions

Because exclusive transactions (operation 19) lock the entire file,
record locks in a transaction apply only to concurrent transactions
(operation 1019). (For information about transaction types, see
User Transactions).

The MicroKernel allows a client to lock either single or multiple
records in a file from within a concurrent transaction. The client can
lock the record(s) by either of the following methods:

Explicitly specify a record lock bias value on a Get or Step
operation using one of the same bias values listed previously.
(Record lock bias values for concurrent transactions are the
same as those for non-transactional record locks.)

Specify a record lock bias value on a Begin Concurrent
Transaction operation (1019). (Again, these bias values are the
same as those for non-transactional record locks, listed
previously .)

When you specify a record lock bias value on a Begin Concurrent
Transaction operation, each operation inside that transaction—if it
has no bias value of its own—inherits its bias value from the Begin
Concurrent Transaction operation. For example, a Get Next
operation (06) inherits the 200 bias from the preceding biased Begin
Concurrent Transaction operation (1219), causing the Get Next to
be performed as a no-wait read and lock operation (206).

As implied in the preceding paragraph, a client can still add bias
values to the individual Step or Get operations that occur within the
concurrent transaction. Biases added in this manner take precedence
over the inherited bias.

The events that cause the release of single- and multiple-record locks
in concurrent transactions are similar to those for the non-
transactional environment. For single, see Single-Record Locks. For
multiple, see Multiple-Record Locks with the following exceptions:
186

User Transactions
A Close operation does not release explicit record locks secured
from within a concurrent transaction. With version 7.0 of the
MicroKernel, you can close the file within a transaction even if a
record is locked.

An End or Abort Transaction operation releases all record locks
obtained from within the transaction.

Finally, when a client in a concurrent transaction reads one or more
records using an unbiased Get or Step operation, and no lock bias
was specified on the Begin Concurrent Transaction operation, the
MicroKernel performs no locking.

Implicit Record Locks
When a client attempts to update or delete a record, either external
to any transaction or from within a concurrent transaction, the
MicroKernel implicitly tries to lock that record on behalf of the
client. In an exclusive transaction, an implicit record lock is
unnecessary because the MicroKernel locks the entire file prior to
performing the Update or Delete operation. (See File Locks).

The MicroKernel can grant an implicit record lock to a client as long
as no other client:

Holds an explicit lock on the record.

Holds an implicit lock on the record.

Has locked the file containing the record.

Note The MicroKernel allows any single client to hold both an
explicit lock and an implicit lock on the same record.

The MicroKernel performs the specified Update or Delete operation
only if it can successfully obtain the implicit record lock and any
other locks required to secure the integrity of the file during
execution of the operation. (See Implicit Locks).

If the operation is in a non-transactional environment, the
MicroKernel drops the implicit record lock on completion of the
Update or Delete operation. If the operation is in a concurrent
transaction, the MicroKernel retains the lock. The lock then remains
in effect until the client ends or aborts the transaction, or the client
is reset (which implies an Abort Transaction operation). No explicit
Unlock operation is available to release implicit record locks.
187

Supporting Multiple Clients
By retaining implicit locks during a transaction, the MicroKernel can
prevent conflicts that occur as the result of a client explicitly locking
a record (via a Get/Step operation with a lock bias value) if that
record has a new uncommitted image that another client generates.

Consider what could happen if the MicroKernel did not retain
implicit locks. Client 1, from within a concurrent transaction,
performs an update on record A, thereby altering the image of the
record. However, because client 1 has not ended its concurrent
transaction, it has not committed the new image. Client 2 attempts
to read and lock record A.

With no implicit locks retained, client 1 no longer has an implicit
record lock on record A, meaning that client 2 can successfully read
and lock the record. However, client 2 reads the old image of record
A, because client 1 has not committed the new image. When client 1
ends its transaction (committing the changed image of record A) and
client 2 attempts to update record A, the MicroKernel returns Status
Code 80 (Conflict) because client 2’s image of that record is no
longer valid. (See the example in Table 38.)

Consider a situation in which a client has locked a record (either
explicitly or implicitly) or has locked the entire file containing that
record. If another client attempts to update or delete the record in
question from within a concurrent transaction—if it tries to
implicitly lock the record—some implementations of the
MicroKernel will wait, continually retrying the operation until the
client whose lock is blocking the operation releases that lock. (No
version of the MicroKernel attempts any retry effort for a non-
transactional Update or Delete.)

Supplying a bias value of 500 on the Begin Concurrent Transaction
operation (1519) forces the MicroKernel not to retry the Insert,
Update, and Delete operations within a transaction.

For local clients, the MicroKernel performs deadlock detection.
However, because the 500 bias suppresses retries, the MicroKernel
does not need to perform deadlock detection.

This 500 bias value on the Begin Transaction operation can be
combined with the record lock bias values. For example, using 1019
+ 500 + 200 (1719) suppresses retries for Insert, Update, and Delete
operations and specifies single no-wait read locks at the same time.
188

User Transactions
The following example illustrates the usefulness of implicit locks. In
the example, temporarily assume that implicit locks do not exist.

Assuming that the MicroKernel does not apply an implicit record
lock in Step 3, client 2 can successfully read and lock record A in
Step 4 but cannot update that record in Step 6 because in Step 4,
client 2 reads a valid image of record A. However, by the time client
2 reaches Step 6, that image is no longer valid. In Step 5, client 1
commits a new image of record A, thereby invalidating the image of
the record read by client 2 in Step 4.

In reality, however, the MicroKernel implicitly locks record A in
Step 3, which means that the MicroKernel returns Status Code 84 in
Step 4, requiring client 2 to retry its read operation until client 1
performs Step 5.

Consider what would happen if Steps 3 and 4 were reversed in the
preceding example. Client 2 obtains an explicit lock on record A.
Client 1 is forced to wait and retry its Update operation until client 2
completes its own update of record A (which releases client 2’s
explicit lock on that record). On client 1’s next retry to update record
A, the MicroKernel returns Status Code 80. This status indicates that
client 1’s image of record A was no longer valid (client 1 having read
record A prior to that record being changed by client 2).

Table 38 Example without Implicit Locks

Client1 Client2

1. Begin concurrent transaction.

2. Read record A.

3. Update record A (locks on pages
involved, but no implicit lock on record).

4. Read record A with single-record
lock (explicit lock on record).

5. End transaction (releases page locks).

6. Update record A (conflict, Status
Code 80).

7. Reread record A with lock.

8. Update record A.
189

Supporting Multiple Clients
Implicit Locks Clients have significant freedom to modify a file simultaneously
because they share cache under the same MicroKernel. Non-
transactional modifications (insert, update, or delete operations)
never block other non-transactional modifications or modifications
in concurrent transactions by another client. Pending modifications
in a concurrent transaction do not block other modifications (either
non-transactional or in concurrent transactions), as long as those
changes do not affect the same records.

The MicroKernel tries, on behalf of the client, to implicitly lock the
records that are modified during execution of an Insert, Update, or
Delete operation if the modification occurs either outside of a
transaction or from within a concurrent transaction. (In an exclusive
transaction, an implicit record or page lock is unnecessary because
the MicroKernel locks the entire file prior to performing an Update
or Delete operation. In the case of an Insert operation, the
MicroKernel requests a file lock if the client does not have one yet.
See File Locks) As with implicit record locks, the MKDE provides
implicit page locks; the client does not explicitly request them.

The records on a data page being modified (or inserted) must always
be locked. However, a single operation might need to lock several
other records as well. For example, if the change made to a record
involves one or more of the record’s keys, then the MicroKernel must
lock the records on the index pages containing the affected key
values. The MicroKernel must also lock all index pages modified by
the action of balancing the B-tree(s) during operation. If a
modification affects the variable-length portion of a record, the
MicroKernel must lock the entire variable page(s) as well.

If such an operation is performed in a non-transactional
environment, the MicroKernel drops the implicit record locks on
completion of the operation. If the operation is performed from
within a concurrent transaction, the MicroKernel retains the locks,
which then remain in effect until the client ends or aborts the
transaction, or until the client is reset (which implies an Abort
Transaction operation). No explicit Unlock operation is available to
release implicit record or page locks.

If an Insert, Update, or Delete operation issued in a concurrent
transaction must modify a record or page (it requires an implicit
record lock), but that record or page is currently locked by another
concurrent transaction (or the whole file is locked by an exclusive
transaction), the MicroKernel waits, continually retrying the
190

User Transactions
operation until the client whose lock is blocking the operation
releases that lock. The MicroKernel does not attempt any retry effort
for a nontransactional Update or Delete.

When a client is unsuccessful in getting an implicit record lock, the
client can suppress retries on the operation by using bias value 500
on the Begin Concurrent Transaction operation.

Implicit page locks and explicit or implicit record locks have no
blocking effect on each other. A client can read and lock a record on
a page even if another client has implicitly locked the page containing
that record (as long as the record to be locked is not the same one that
has been updated, as discussed in Implicit Record Locks).
Conversely, a client can update or delete a record, thereby implicitly
locking the data page that contains the affected record even if that
data page contains a record already locked by another client.

File Locks When a client touches a file for the first time in an exclusive
transaction, that client tries to obtain a file lock.

Note As the preceding statement implies, the MicroKernel does
not lock a file when the client performs a Begin Transaction
operation. The lock occurs only when the client reads or
modifies a record after performing the Begin Transaction
operation.

A file lock, as its name suggests, locks the entire file. A client’s file
locks remain in effect until that client ends or aborts the transaction,
or until the client is reset (which implies performing an Abort
Transaction operation).

If a client tries to lock a file in an exclusive transaction but another
transaction already holds a lock on that file (a record, page, or file
lock), the MicroKernel waits, continually retrying the operation
until the client whose lock is blocking the operation releases that
lock. In addition, if a local client blocks the operation and the
MicroKernel detects a deadlock situation, the MicroKernel returns
Status Code 78 (Deadlock Detected).

When a client is unsuccessful in getting a file lock, the client can
suppress retries on the operation using a no-wait lock bias value of
200 or 400 on the Begin Exclusive Transaction operation (219 or
191

Supporting Multiple Clients
419). If a client starts a transaction in this way, the MicroKernel
returns Status Code 84 or 85 when a file lock cannot be granted.

Bias values 200 and 400 are derived historically from record locks.
However, the concept of single and multiple locks from the record
lock environment means nothing in an exclusive transaction
environment. In effect, all records in the file are locked when the file
is locked. Only the no-wait meaning of the biases is preserved in the
exclusive transaction environment.

The MicroKernel accepts a wait lock bias (100 or 300) on a Begin
Exclusive Transaction operation (operation 119 or 319, respectively);
however, these additional bias values have no meaning because the
default mode on the Begin Transaction operation is to wait.

When any part of a file is first touched in an exclusive transaction, the
MicroKernel locks the entire file. Therefore, the MicroKernel ignores
record lock bias values explicitly added to the operation codes for any
Get or Step operations performed inside an exclusive transaction,
with the following exception.

When a client performs a Begin Transaction operation in wait mode
(operation 19, 119, or 319), but the first read (Get or Step operation)
in that transaction is biased by 200 or 400 (a no-wait lock bias), the
no-wait bias takes precedence over the Begin Transaction operation’s
wait mode. Therefore, when the client performs this biased read
operation but cannot lock the file (for example, another client has
already locked a record in the file), the MicroKernel does not wait
(which is its default) and does not check for deadlock, because it
assumes that the client retries the read operation an unlimited
number of times. In this same situation, other versions of the
MicroKernel that perform retries automatically recognize the no-
wait bias as an indication not to retry the file lock and not to check
for deadlock.

Note The 200 and 400 bias values on a Get or Step operation
performed from within an exclusive transaction have only the
meaning of not waiting; they do not request an explicit record
lock, as they would from within a concurrent transaction.

File locks are incompatible with both record locks and page locks;
therefore, the MicroKernel does not grant a file lock to a client if
another client holds a record or a page lock on that file. Conversely,
192

User Transactions
the MicroKernel does not grant a record or page lock to a client if
another client has already locked that file.
193

Supporting Multiple Clients
Examples of Multiple Concurrency Control
The following examples illustrate the use of the different
concurrency control mechanisms.

Example 1 Example 1 shows the interaction between explicit and implicit
record locks, implicit page locks, and passive concurrency. Assume
that the two records manipulated in this example (record A and
record B) reside on the same data page and that the file has only one
key. For further explanation of each step, see the paragraphs
following the example.

The following table shows the interactions among implicit and
explicit record locks, implicit page locks, and passive concurrency.

Table 39 Interaction Among Record Locks, Page Locks, and Concurrency

Client1 Client2 Client3 (non-transactional)

1. Begin Concurrent Transaction with
multiple no-wait lock bias (1419)

 2. Begin Concurrent Transaction
with single wait lock bias (1119)

3. Read Record A using Get Equal
with single no-wait lock bias (205)

 4. Read record B using Get Equal
(5) (single wait lock bias inherited)

 5. Read record B using Get
Equal (5)

 6. Attempt to Delete (4) record
B: MicroKernel returns Status
Code 84, and client 3 must retry

 7. Update (3) record B

8. Attempt to Update (3) record A:
MicroKernel must retry

 9. End Transaction (20)

10. Retry Update (3) of record A:
Successful

194

Examples of Multiple Concurrency Control
In Step 1, client 1’s Begin Concurrent Transaction operation specifies
a generic bias value of 400 (multiple-record no-wait locks). This bias
will be inherited by each non-biased Get or Step operation in this
transaction. At this point, the MicroKernel has applied no locks to
the file, its pages, or its records.

In Step 2, client 2’s Begin Transaction operation specifies a generic
bias value of 100 (single-record wait locks). This bias will be
inherited by each non-biased Get or Step operation in this
transaction. The MicroKernel still has not applied any locks to the
file, its pages, or its records.

In Step 3, client 1’s Get Equal operation specifies a bias value of 200
(single-record no-wait lock). The MicroKernel accepts this bias value
rather than the inherited 400 (multiple no-wait record lock), because
an individual operation’s specified bias value takes precedence over
any inherited bias value.

In Step 4, client 2’s Get Equal operation (5) does not specify any bias
value of its own; therefore, it inherits the single wait lock bias value
of 100 from client 2’s Begin Concurrent Transaction operation
(1119). Even though record A and record B are on the same page,
both lock requests (Step 3 and Step 4) are successful because a record
lock request locks only the specified record; it locks neither the data
page on which the record is located, nor any associated index pages.

 11. Retry Delete (4) of record B:
MicroKernel returns Status
Code 80, and client 3 must
reread record B

 12. Reread record B using Get
Equal (5)

 13. Retry Delete (4) of record B:
MicroKernel returns Status
Code 84

14. End Transaction

 15. Retry Delete (4) of record B:
Successful

Table 39 Interaction Among Record Locks, Page Locks, and Concurrency continued

Client1 Client2 Client3 (non-transactional)
195

Supporting Multiple Clients
In Step 5, client 3’s non-transactional Get Equal operation (5) with
no lock request is successful, because non-transactional reads are
always successful (as long as the requested record exists).

In Step 6, client 3 attempts to Delete (4) record B; however, it cannot
obtain the implicit record lock on record B required to delete the
record, because client 2 holds an explicit lock on the record.
Consequently, the MicroKernel returns Status Code 84 (Record or
Page Locked) to client 3. Client 3 must then relinquish control and
retry the Delete operation (if it wishes) later.

In Step 7, client 2 first successfully obtains an implicit record lock on
record B. While record B is already explicitly locked by client 2
(because of Step 4’s inherited single wait lock bias from Step 2), no
problem exists because both the explicit lock and the implicit lock
belong to the same client. At this same time, client 2 also successfully
obtains page locks on the data page containing record B and on the
index page containing record B’s key value.

Note The data page locked by client 2 also contains record A,
which is explicitly locked by client 1. However, as explained in
Implicit Locks, record locks do not block page locks.

When the MicroKernel performs the actual Update operation (3) in
Step 7, it writes the new, uncommitted images of the modified data
and index pages as shadow pages to the file. At this point, the
MicroKernel releases client 2’s explicit lock on record B. However,
client 2 retains its implicit record lock on record B, as well as the
implicit page locks it just obtained. Even after client 2 completes its
Update operation (3) in Step 7, client 3 still cannot get the implicit
record lock on record B, because now client 2 holds an implicit
record lock on the record. Client 3 must continue its retry efforts.

If the clients are remote, client 2 puts a pending modification status
on the file (in addition to the page locks, which are still necessary for
concurrency control among clients local to client 2) before actually
updating the file.

In Step 8, client 1 first successfully obtains an implicit record lock on
record A. Even though record A’s data page has already been locked
by client 2, no lock conflict exists, because page locks do not block
record locks. (See Implicit Locks) Next, client 1 attempts to obtain an
implicit page lock on the data page containing record A. This
196

Examples of Multiple Concurrency Control
attempt fails because the data page has already been locked by client
2 in Step 7. Because the Begin Concurrent Transaction operation
(1419) did not have a 500 bias specified, the MicroKernel retries the
operation. (The MicroKernel also performs deadlock detection if the
clients are local.)

Had client 1 issued its Begin Transaction operation with an
additional 500 bias (1919), the MicroKernel would have returned
control to the user immediately.

If the clients are remote, client 1 encounters the pending
modification status set by client 2 in Step 7. Therefore, the
MicroKernel retries the operation.

In Step 9, by ending its transaction, client 2 releases its implicit
record lock on record B and the implicit page locks on the data index
pages it locked in Step 5. At this point, the MicroKernel commits all
the new page images that client 2 created during the transaction.
These images now become a valid part of the file.

If the clients are remote, client 2 clears the pending modification
status on the file, in addition to releasing the locks.

In Step 10, client 1’s continuing Update retries are finally successful,
because client 2 no longer has record A’s data and index pages locked.

In Step 11, despite the fact that client 2 ended its transaction in Step
9 (thereby releasing all its locks), client 3 still cannot delete record B.
Now, when client 3 attempts to delete the record, the MicroKernel’s
passive concurrency control returns Status Code 80 (Conflict),
because client 2 has modified record B since client 3 originally read
it in Step 5. At this point, client 3 must re-read the record before it
can retry the Delete operation.

In Step 12, client 3 reads record B again, getting an image that reflects
the changes made to the record by client 2 in Step 7 and committed
in Step 9.

In Step 13, client 3 again unsuccessfully attempts to delete record B,
receiving a Status Code 84 from the MicroKernel. This status code
reflects the fact that client 1, in updating record A, has an implicit
page lock on the data and index pages containing record B
(assuming, as stated earlier, that the same data page contains records
A and B, and that the same index page contains the key values for
those records).
197

Supporting Multiple Clients
In Step 14, client 1 ends its transaction, committing its changes and
releasing its implicit page locks.

In Step 15, client 3 is finally able to delete record B.

Example 2 Example 2 shows how file locks and passive concurrency control
interact. For further explanation of each step, see the paragraphs
following the example.

In Step 4, client 1 obtains an explicit record lock on record E, file 3.

In Step 6, client 1 begins an exclusive transaction. Even though
client 1 has three files open, the MicroKernel has not yet locked any
of those files, nor does the MicroKernel release the explicit lock on
record E in file 3 as a result of performing the Begin Transaction
operation.

Table 40 Interaction with File Locks and Passive Concurrency

Client1 Client2

1. Open file 1 (0)

2. Open file 2 (0)

3. Open file 3 (0)

4. Get record E, file 3 using a single
record lock (105)

 5. Open file 1 (0)

6. Begin Exclusive Transaction (19)

7. Get record B, file 1 (5)

 8. Get record A, file 1 (5)

 9. Update record A, file 1 (3) (Status
Code 85, retrying)

10. Get record C, file 2 (5)

11. Update record C, file 2 (3)

12. Delete record B, file 1 (4)

13. End Transaction (20)

 14. Retry Step 9 (successful)
198

Examples of Multiple Concurrency Control
In Step 7, client 1 obtains a file lock on file 1 as a result of touching
the file. (See File Locks) Step 7 would have failed if, in a previous step
(for example, between Steps 5 and 6), client 2 had read a record from
file 1 using an operation with a lock bias.

In Step 8, client 2 successfully reads record A from file 1. This read is
successful because it does not request any lock. However, had the Get
Equal operation (5) been issued with a lock bias, the operation
would have failed because client 1 currently has file 1 locked.

In Step 9, client 2 cannot obtain an implicit record lock because
client 1 has the file locked. Therefore, the MicroKernel returns Status
Code 85 (File Locked) back to client 2. Client 2 must now relinquish
control and retry Step 9 until client 1 ends or aborts its transaction
(which happens in Step 13). (See When a Record Has Already Been
Locked)

In Step 10, client 1 obtains a file lock on file 2.

In Step 13, client 1 releases file locks on files 1 and 2.

Note Client 1 never locked file 3 because it never touched that
file in its exclusive transaction. In fact, even after Step 13, client
1 retains its explicit record lock on record E of file 3. Client 1
would have released record E only if the client had touched file 3
(thereby locking the entire file in the transaction).

In Step 14, client 2’s retry of the Update operation in Step 9 is finally
successful.
199

Supporting Multiple Clients
Concurrency Control for Multiple Position Blocks
The MicroKernel supports using multiple position blocks (cursors)
for the same client in the same file.

Inside either a concurrent or an exclusive transaction, multiple
position blocks share the same view of modified pages. Each position
block in a set of multiple position blocks sees the changes made by
the set’s other position blocks immediately, even before those changes
are committed.

Multiple position blocks share all locks: explicit and implicit record
locks, implicit page locks, and file locks. Consequently, for any client,
no one position block’s locks can prevent another position block
from obtaining another lock in the same file.

When a client ends or aborts its transaction, the MicroKernel
releases all that client’s implicit locks and file locks. However, the
MicroKernel releases a client’s explicit record locks only as each
position block in a file requires, regardless of whether the lock was
granted from within a transaction.

For example, an Unlock operation (27) with -2 as its key value
releases only the multiple-record locks belonging to the specified
position block. A Close operation (1) releases only those locks
obtained for the same position block that is specified when
performing the Close operation. Similarly, when a client obtains a
position block’s first record, page, or file lock inside a transaction,
the MicroKernel releases only those explicit record locks that had
been obtained for that position block. In Example 2. (page 9-198), if
client 1 had opened the same file three times (instead of file 1, file 2
and file 3), and if client 1 had touched the file using only the first two
position blocks, the explicit lock obtained for the third position
block would have remained even after the End Transaction
operation.
200

Multiple Position Blocks
Multiple Position Blocks
If an application using the BTRV function has two active position
blocks on the same file and issues a read with a multiple record lock
for the same record from both position blocks, both receive a
successful status. However, when attempting to unlock the record
with either a Key Number of -1 and the position in the Data Buffer
or with a Key Number of -2, the record is unlocked only if both
position blocks issue the unlock calls. If only one position block
makes the unlock call (it does not matter which one), another user
receives a Status Code 84 upon trying to lock the record. After both
position blocks issue the unlock, the second user can lock the record.

This behavior is also true with single record locks, although the
unlock command in this case does not require a specific Key Number
and position in the Data Buffer. However, both position blocks still
must issue the unlock in order for another user to lock the record.

Each cursor (that is, each position block) gets a lock. The
MicroKernel allows cursors of the same client to lock the same
record, but each cursor must issue an unlock before the record is
completely unlocked.
201

Supporting Multiple Clients
ClientID Parameter
When developing an application using the BTRVID function rather
than BTRV, you must specify an additional parameter called a
ClientID. This allows an application to assign itself more than one
client identity to Btrieve and execute operations for one client
without affecting the state of the other clients.

For example, assume that two applications are running on Windows
and each uses three different clientIDs. This counts as six Active
Clients. It does not matter if this is two instances of the same
application (and the same ClientID values in each instance) or two
different applications. Btrieve distinguishes between each of the six
ClientIDs.
202

c h a p t e r
10
Debugging Your Btrieve
Application
This chapter provides information that may be helpful in debugging
your Btrieve application. It contains the following sections:

Trace Files

Indirect Chunk Operations in Client/Server Environments

Engine Shutdowns and Connection Resets

Reducing Wasted Space in Files
203

Debugging Your Btrieve Application
Trace Files
The MicroKernel’s Trace Operations configuration option allows
you to trace each Btrieve API call and save the results to a file. This is
helpful in debugging applications. The following shows a sample
trace file.

MicroKernel Trace File of a BUTIL STAT Call

MicroKernel Database Engine [Server Edition] for
Windows NT trace file
Created : Wed Dec 17 18:19:09
<In> 0198 Opcode : 0026 Crs ID : 0xffffffff Db
Length : 00005 Keynum : ff Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: 00 00 00 00 00 -
.....
KBuf: ?? -
.
<Out>0198 Status : 0000 Crs ID : 0xffffffff Db
Length : 00005 Keynum : ff Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: 07 00 00 00 54 -
....T
KBuf: ?? -
.
--

<In> 0199 Opcode : 0000 Crs ID : 0xffffffff Db
Length : 00001 Keynum : fe Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: 4e 4f 54 53 48 4f 57 4e - 00
NOTSHOWN.
KBuf: 5c 5c 4e 54 34 53 52 56 - 2d 4a 55 44
49 54 5c 43 \\NT4SRV-JUDIT\C
 24 5c 64 65 6d 6f 64 61 - 74 61 5c 74
75 69 74 69 $\demodata\tuiti

<Out>0199 Status : 0000 Crs ID : 0x00000002 Db
Length : 00001 Keynum : fe Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: 4e 4f 54 53 48 4f 57 4e - 00
NOTSHOWN.
KBuf: 5c 5c 4e 54 34 53 52 56 - 2d 4a 55 44 49 54
5c 43 \\NT4SRV-JUDIT\C

24 5c 64 65 6d 6f 64 61 - 74 61 5c 74 75 69 74
69 $\demodata\tuiti
204

Trace Files
--

<In> 0200 Opcode : 0015 Crs ID : 0x00000002 Db
Length : 00028 Keynum : fe Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf:00 00 00 00 00 01 07 00 - 00 00 00 00 00 00 00
03

c3 3f 00 10 00 00 00 00 - b4 fe 36 03
.?........6.
KBuf: 00 00 00 00 1c 00 00 00 - da fe 36 03 00 00
00 006.....

 00 01 07 00 00 00 00 00 - 00 00 00 03 c3 3f 00
10.............?..

<Out>0200 Status : 0000 Crs ID : 0x00000002 Db
Length : 00007 Keynum : fe Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: 03 00 0e 00 04 05 01 -
.......
KBuf: 00 00 00 00 07 00 00 00 - da fe 36 03 03 00
0e 006.....
 04 05 01 00 00 00 00 00 - 00 00 00 00 00 00 00
00
--

<In> 0201 Opcode : 0015 Crs ID : 0x00000002 Db
Length : 33455 Keynum : ff Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: 2b 00 cb ff ff ff ff ff - ff ff ff ff ff ff
ff 00 +...............
 00 0e 00 04 05 01 00 00 - 00 00 00 00 00 00 00 00
................
 00 00 00 00 00 00 00 00 - 00 00 00 14 4e 54 34 53
............NT4S
 52 56 2d 4a 55 44 49 54 - 5c 75 6e 6b 6e 6f 77 6e
RV-JUDIT\unknown
KBuf: 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00
00 00
 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
<Out>0201 Status : 0000 Crs ID : 0x00000002 Db
Length : 00064 Keynum : ff Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: 0e 00 00 10 03 70 08 00 - 00 00 01 12 00 00
00 00p..........
 01 00 04 00 00 01 08 00 - 00 00 0f 00 00 00 00 00
................
 05 00 05 00 03 05 04 00 - 00 00 0a 00 00 00 01 00
................
205

Debugging Your Btrieve Application
 0a 00 01 00 03 01 02 00 - 00 00 00 00 00 00 02 00
................
KBuf: 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00
00 00
 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
--

<In> 0202 Opcode : 0065 Crs ID : 0x00000002 Db
Length : 00268 Keynum : 00 Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: 45 78 53 74 01 00 00 00 - 00 00 00 00 01 00
00 00 ExSt............
 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
KBuf: ?? -
.
<Out>0202 Status : 0000 Crs ID : 0x00000002 Db
Length : 00035 Keynum : 00 Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: 01 00 00 00 01 00 00 00 - 17 00 00 00 43 3a
5c 44C:\D
 45 4d 4f 44 41 54 41 5c - 54 55 49 54 49 4f 4e 2e
EMODATA\TUITION.
 4d 4b 44 - MKD
KBuf: ?? -
.
--

<In> 0203 Opcode : 0065 Crs ID : 0x00000002 Db
Length : 00008 Keynum : 00 Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: 45 78 53 74 02 00 00 00 -
ExSt....
KBuf: ?? -
.

<Out>0203 Status : 0000 Crs ID : 0x00000002 Db
Length : 00008 Keynum : 00 Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: 00 00 01 00 00 00 07 00 -
........
KBuf: ?? -
.
--

206

Trace Files
<In> 0204 Opcode : 0001 Crs ID : 0x00000002 Db
Length : 00000 Keynum : 00 Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: ?? -
.
KBuf: ?? -
.

<Out>0204 Status : 0000 Crs ID : 0x00000000 Db
Length : 00000 Keynum : 00 Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: ?? -
.
KBuf: ?? -
.

--

<In> 0205 Opcode : 0028 Crs ID : 0xffbc000c Db
Length : 00000 Keynum : 00 Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: -
KBuf: -

<Out>0205 Status : 0000 Crs ID : 0xffbc000c Db
Length : 00000 Keynum : 00 Clnt ID : 00 00 00
00 00 00 00 00 00 00 85 00 50 55 00 00
DBuf: -
KBuf: -
--

Each operation shows values passed in to and returned by the
MicroKernel. Input values are marked by <In> and output values are
marked by <Out>; each is followed by a number that indicates the
sequence in which the operations were processed, so that <Out> 0016
is the result of <In> 0016. The Opcode field shows the operation
code performed; the Status field shows the returned status code.

Crs ID is the cursor ID, or handle, that the MicroKernel assigned to
the request. This information can be helpful in debugging
applications that support multiple clients or that support single
clients with multiple cursors.

Db Length reflects the Data Buffer Length. Keynum reflects the Key
Number. Clnt ID reflects the Client ID parameter used by the
BTRVID and BTRCALLID functions. DBuf reflects the Data Buffer
contents. KBuf reflects the Key Buffer contents. The trace file
207

Debugging Your Btrieve Application
truncates the Data Buffer and Key Buffer contents, depending on the
MicroKernel configuration.

Note To avoid a degradation in performance, only turn the Trace
File setting on for short periods of time so that you can
determine what operations are being handled by the
MicroKernel.
208

Indirect Chunk Operations in Client/Server Environments
Indirect Chunk Operations in Client/Server Environments
When attempting a Get Direct/Chunk operation (23), your
application may receive a Status Code 62. You may find that your
application is specifying the Indirect Random Descriptor option
(Subfunction 0x80000001), but with tracing enabled, you can see
that the MicroKernel is actually receiving a Direct Random
Descriptor option (Subfunction 0x80000000).

The indirect chunk option allows an application to specify a pointer
to a data address in the application's memory block where the data
should be stored after it is retrieved, rather than having the data
returned in the actual Data Buffer parameter of the Btrieve call.
However, since the application is running in an environment in
which the MicroKernel does not have direct access to the
application's memory, the Btrieve client Requester must convert
indirect chunk requests into direct chunk requests before sending
the request to the MicroKernel.

All applications always use interprocess communication (IPC) to
communicate between the application and the MicroKernel. Since
IPC is required, the MicroKernel has no access to the application's
memory, so the client Requester must allocate a single contiguous
block of memory and adjust all data pointers to point into that
memory block. On return from the MicroKernel, the Requester
converts the Data Buffer back into the appropriate format for the
indirect option and moves the returned data chunk into the
designated, indirect address in the application's memory block.
209

Debugging Your Btrieve Application
Engine Shutdowns and Connection Resets
If you are developing a multi-threaded console application targeting
either Windows 9X or Windows NT, you must set up a control
handler routine to handle a potential CTRL-C keystroke. In this
control handler routine, you must clean up all of your Btrieve clients
by issuing either a Reset operation (28) or a Stop operation (25). The
cleanup process must complete before your application passes the
CTRL-C event on to the operating system.

If your application still has active clients when the system terminates
the threads, the MicroKernel cannot clean up its connection with the
application and is forced to allocate more system resources. This
causes performance degradation and significantly increases the time
needed for the engine to shut down. For more information about
control handler routines, refer to the Microsoft documentation.
210

Reducing Wasted Space in Files
Reducing Wasted Space in Files
The MicroKernel allocates disk space as needed. If there is not
enough room in the file when your application inserts new records,
the MicroKernel dynamically allocates additional data and index
pages to the file. The size of each allocated page is the same as the
page size with which the file was created. The MicroKernel also
updates directory structures to reflect the new file size.

Once the MicroKernel allocates space to a file, that space remains
allocated as long as the file exists.

To reduce the space required for a file from which
numerous records have been deleted, you can use the
Maintenance utility as follows:

1 Create a new file with the same characteristics as the original file.

In the interactive Maintenance utility, the commands are
Open and Create As from the File menu. In the command-
line based Maintenance utility, the command is CLONE.

2 Insert records into the new file using one of the following
methods:

Write a small application that reads the records from the
original file and inserts them into the new file.

In the command-line Maintenance utility, use the SAVE
command and then the LOAD command. Alternatively, you
can use the COPY command.

In the interactive Maintenance utility, use the Save
command and then the Load command from the Data
menu. Alternatively, you can use the Copy command from
the Data menu.

3 Rename the new file and then delete the original file from the
disk.
211

Debugging Your Btrieve Application
212

c h a p t e r
11
Btrieve API Programming
This chapter provides information to help you begin developing a
Pervasive PSQL application by making direct calls to the Btrieve API.
The most common programming tasks are included with sample
code and sample structures for Visual Basic and Delphi.

This chapter includes the following sections:

Fundamentals of Btrieve API Programming

Visual Basic Notes

Delphi Notes

Starting a Pervasive PSQL Application

Btrieve API Code Samples

Declarations of Btrieve API Functions for Visual Basic
213

Btrieve API Programming
Fundamentals of Btrieve API Programming
The following flow charts demonstrate which Btrieve operations to
use in your applications to insert, update, and delete records. For
more detailed information about APIs, refer to the Btrieve API
Guide.

Btrieve API
Flow Chart

Inserting Records
1 OPEN (0)

2 INSERT (2) to add record (repeat)

3 CLOSE (1) file

4 STOP (25) to release resources

Updating Records
1 OPEN (0)

2 GET EQUAL (5) or some other single-record retrieval operation
to find existing record and establish physical currency

3 Modify record

4 UPDATE (3)

5 CLOSE (1)

6 STOP (25) to release resources

Deleting Records
1 OPEN(0)

2 GET EQUAL(5) or some other single-record retrieval operation
to find existing record and establish physical currency

3 DELETE(4)

4 CLOSE(1)

5 STOP (25) to release resources
214

Visual Basic Notes
Visual Basic Notes
The following are some things to be aware when you are developing
Pervasive PSQL applications with Visual Basic.

Visual Basic has a known byte alignment issue with user-defined
data types. You can also refer to the section Visual Basic
regarding the Btrieve API for information about this issue and
using the PAln32.DLL, Pervasive’s Btrieve Alignment DLL.

Creating a record class for each type of resulting record will
facilitate data access as indicated in the following steps:

a. Create a class named Record.

b. Create a structure defining the layout of your record:

Type Byte2

field1 byte

field2 byte

End Type

Type Rec

Size As Byte2

Name As String*30 ‘SQL Mask = x30

Salary As String*10 ‘SQL Mask = zzzzzzz.99

End Type

c. Use iAsciiFlag = 1 and ispacing=0 to read data into an
instance of Rec:

Dim instofRec As New Rec

d. Use dot notation to access data:

instofRec.Name=”Jeff”

e. Use the record class to handle all the instofRec data
manipulation.
215

Btrieve API Programming
Delphi Notes
The following are things to consider when you use Delphi to develop
your Pervasive PSQL application.

Unlike older versions of Pascal, Delphi’s string type (without a
length specifier) is dynamic and null terminated. This means
that you are not guaranteed to have memory allocated to the
string buffer until you assign it a value. This means when using
the type string, you need to pad it large enough to hold the
expected results. Using the StringOfChar() function, you can
assign a blank string large enough to accommodate the expected
return value from Btrieve, as illustrated in the following
example:

 CustKeyBuffer: string; //long string

 CustBufLen : word;

 //MAX_KEY_LEN is 255 since BTRV() always passes

//255 for the Key Length :

 CustKeyBuffer := StringOfChar(‘ ‘,
MAX_KEY_LEN);

 CustBufLen := SizeOf(CustRec);

 Status := BTRV(B_GET_FIRST, CustPosBLock, CustRec,
CustBufLen, CustKeyBuffer, 0);

{CustKeyBuffer now has the value of the key
for}

{the record retrieved}

Not all of the Delphi samples included in this chapter illustrate
error reporting. However, you should check return codes after
every call.

If you try the samples in this chapter, for the Fetches that use the
INTERNAL_FORMAT style, the order of the fields in the query
must match the order of members you fetch from the data
record. When you use the FillGridHeaders() routine, you must
stuff the grid in the same order as the query lists the fields.
216

Starting a Pervasive PSQL Application
Starting a Pervasive PSQL Application
When you are developing a Pervasive PSQL application, you must
include the appropriate source module for the specific programming
interface.

BTRCONST and BTRAPI32—source modules needed for
Btrieve applications

Adding
Pervasive
PSQL Source
Modules

You need to include either the Btrieve source module into the
programming interface in which you are developing your
applications.

To add a Btrieve source module in a Visual Basic
project:

1 Start a new project in Visual Basic.

2 Add an existing standard module to your project, if appropriate.

3 Add the Pervasive PSQL source modules.

To add a Btrieve source module in a Delphi project:

1 Start a new project in Delphi.

2 Select Options from the Project menu.

3 Click the Directories tab.

4 Insert the location <path>\INTF\DELPHI in the Search Path
data field (path refers to where you installed the Pervasive PSQL
SDK components).

5 Include source modules in your USES clause.
217

Btrieve API Programming
Btrieve API Code Samples
This section shows Visual Basic, Delphi, and C/C++ code samples
for the following tasks you can perform using the Btrieve API:

Creating a File

Inserting Records

Updating Records

Performing Step Operations

Performing Get Operations

Chunking, BLOBs, and Variable-Length Records

Working with Segmented Indexes

Creating a File The Create (14) operation lets you generate a file from within your
application. To create a file, you need to create a structure that
contains the necessary information required to build a new Btrieve
file.

For specific information about this API, refer to the Btrieve API
Guide.

Sample Code
The following sample code illustrates how to create a file using the
Create operation.

Visual Basic (Creating a File)

This subroutine creates a file called Orders.

Sub CreateOrdersFile(OrdFileLocation As String)

‘The following syntax sets up file
specifications.

OrdFixedRecSize = Len(OrdRecBuf)
FileDefinitionBuffer.RecLen = OrdFixedRecSize
FileDefinitionBuffer.PageSize = 4096
FileDefinitionBuffer.IndxCnt = 2
FileDefinitionBuffer.FileFlags = VARIABLELENGTH

‘Key 0, by order number.
FileDefinitionBuffer.KeyBuf0.KeyPos = 1
FileDefinitionBuffer.KeyBuf0.KeyLen = 4
218

Btrieve API Code Samples
FileDefinitionBuffer.KeyBuf0.KeyFlags = EXTTYPE
+ MODIFIABLE

FileDefinitionBuffer.KeyBuf0.KeyType =
Chr$(BAUTOINC)

‘Key 1, by contact number.
FileDefinitionBuffer.KeyBuf1.KeyPos = 5
FileDefinitionBuffer.KeyBuf1.KeyLen = 4
FileDefinitionBuffer.KeyBuf1.KeyFlags = EXTTYPE

+ MODIFIABLE + DUP
FileDefinitionBuffer.KeyBuf1.KeyType =

Chr$(BUNSGBIN)

BufLen = Len(FileDefinitionBuffer)
OrdFileLocation = OrdFileLocation & " "
KeyBufLen = Len(OrdFileLocation)
CopyMemory OrdKeyBuffer, OrdFileLocation,

Len(OrdFileLocation)
giStatus = BTRCALL(BCREATE, OrdPosBlock,

FileDefinitionBuffer, BufLen, _
ByValOrdFileLocation,

KeyBufLen, 0)
End Sub

Delphi (Creating a File)

The following routine creates a variable-length file called Customer.

function CreateCustomerFile(FileName: String):
SmallInt;
var

CustRec : CustomerRecordType; //User
defined record structure

CustBufLen : word;
CustPosBlock : TPositionBlock; //

array[1..128] of byte
CustFileLocation : String[255];
CustFixedRecSize : LongInt;
FileDefinitionBuffer : FileCreateBuffer; //

Structure type for creating a file
FilebufLen : Word;
KeyNum : ShortInt;

begin
{The following syntax defines file

specifications.}
 {calculate the size of just the fixed portion
of the record.}
219

Btrieve API Programming
CustFixedRecSize :=
SizeOf(CustRec) - SizeOf(CustRec.Notes);

FileDefinitionBuffer.fileSpec.recLen :=
CustFixedRecSize;

FileDefinitionBuffer.fileSpec.PageSize := 4096;
FileDefinitionBuffer.fileSpec.IndexCount:= 4;
FileDefinitionBuffer.fileSpec.FileFlags :=

VARIABLELENGTH;

{Define key specifications, Key 0 by contact
number}
 FileDefinitionBuffer.keyspecArray[0].Position :=
1;
 FileDefinitionBuffer.keyspecArray[0].Length :=
4;{4 byte integer}
 FileDefinitionBuffer.keyspecArray[0].Flags :=
KFLG_EXTTYPE_KEY + KFLG_MODX;
 FileDefinitionBuffer.keyspecArray[0].KeyType :=
AUTOINCREMENT_TYPE;

{Key 1, by contact name.}
 FileDefinitionBuffer.keyspecArray[1].Position :=
5;
 FileDefinitionBuffer.keyspecArray[1].Length :=
30;

FileDefinitionBuffer.keyspecArray[1].Flags := K
FLG_EXTTYPE_KEY +KFLG_MODX +

KFLG_DUP;
 FileDefinitionBuffer.keyspecArray[1].KeyType :=
STRING_TYPE;

{Key 2, by company name.}
 FileDefinitionBuffer.keyspecArray[2].Position :=
35;
 FileDefinitionBuffer.keyspecArray[2].Length :=
60;

FileDefinitionBuffer.keyspecArray[2].Flags := K
FLG_EXTTYPE_KEY + KFLG_MODX +

KFLG_DUP;
 FileDefinitionBuffer.keyspecArray[2].KeyType :=
STRING_TYPE;

{Key 3 by sales representative, by next contact
date.}

FileDefinitionBuffer.keyspecArray[3].Position :=
220;
220

Btrieve API Code Samples
FileDefinitionBuffer.keyspecArray[3].Length :=
4;

FileDefinitionBuffer.keyspecArray[3].Flags :=
KFLG_EXTTYPE_KEY + KFLG_MODX +

KFLG_DUP + KFLG_SEG;
FileDefinitionBuffer.keyspecArray[3].KeyType :=

LSTRING_TYPE;
FileDefinitionBuffer.keyspecArray[4].Position :=

223;
FileDefinitionBuffer.keyspecArray[4].Length :=

4;
FileDefinitionBuffer.keyspecArray[4].Flags :=

KFLG_EXTTYPE_KEY + KFLG_MODX +

KFLG_DUP;
FileDefinitionBuffer.keyspecArray[4].KeyType :=

DATE_TYPE;

CustFileLocation := FileName + #0; {path and
file name of file to create}

FilebufLen :=
sizeof(FileDefinitionBuffer);

KeyNum := 0;
FillChar(CustPosBlock, SizeOf(CustPosBlock),

#0);

Result := BTRV(B_CREATE, //OpCode 14
CustPosBLock, //Position

Block (the "cursor" or "handle")
FileDefinitionBuffer, //

Definition of new file
FileBufLen, //Length of

the definition
CustFileLocation[1], //Path and

file name
keyNum); //0 (zero)

means Overwrite any existing file
end; {CreateCustomerFile}

C/C++ (Creating a File)

BTI_SINT CreateCustomerFile(LPCTSTR
szCustomerFileName)
{
 Customer_Record_Type CustRec; //
User defined record structure
 char CustPosBlock[POS_BLOCK_SIZE];
//"Cursor" into customer file
221

Btrieve API Programming
 char CustFileLocation[255];
 size_t CustFixedRecSize;
 FileDescriptionType FileDefBuf; //
Structure type for creating a file
 BTI_WORD FilebufLen;
 char KeyNum; //
1 byte signed int
 BTI_SINT iStatus;

 /* calculate the size of just the fixed portion
of the record: */
 CustFixedRecSize = sizeof(CustRec) -
sizeof(CustRec.Notes);
 FileDefBuf.RecLen = CustFixedRecSize;
 FileDefBuf.PageSize = 4096;
 FileDefBuf.IndxCnt = 4;
 FileDefBuf.DupPointers = 4;
 FileDefBuf.FileFlags = VAR_RECS |
BALANCED_KEYS;
 /* DEFINE KEY SPECIFICATIONS KEY 0 - BY CONTACT
NUMBER */
 FileDefBuf.KeyBuf[0].KeyPos = 1;
 FileDefBuf.KeyBuf[0].KeyLen = 4;
 FileDefBuf.KeyBuf[0].KeyFlags = EXTTYPE_KEY |
MOD;
 FileDefBuf.KeyBuf[0].KeyType =
AUTOINCREMENT_TYPE;
 /* KEY 1 - BY CONTACT NAME */
 FileDefBuf.KeyBuf[1].KeyPos = 5;
 FileDefBuf.KeyBuf[1].KeyLen = 30;
 FileDefBuf.KeyBuf[1].KeyFlags = EXTTYPE_KEY | DUP
| MOD ;
 FileDefBuf.KeyBuf[1].KeyType = STRING_TYPE;
 /* KEY 2 - BY COMPANY NAME */
 FileDefBuf.KeyBuf[2].KeyPos = 35;
 FileDefBuf.KeyBuf[2].KeyLen = 60;
 FileDefBuf.KeyBuf[2].KeyFlags = EXTTYPE_KEY | DUP
| MOD;
 FileDefBuf.KeyBuf[2].KeyType = STRING_TYPE;
 /* KEY 3 - BY SALES REP BY NEXT CONTACT DATE */
 FileDefBuf.KeyBuf[3].KeyPos = 220;
 FileDefBuf.KeyBuf[3].KeyLen = 3;
 FileDefBuf.KeyBuf[3].KeyFlags = EXTTYPE_KEY | DUP
| MOD | SEG;
 FileDefBuf.KeyBuf[3].KeyType = STRING_TYPE;

 FileDefBuf.KeyBuf[4].KeyPos = 223;
 FileDefBuf.KeyBuf[4].KeyLen = 4;
 FileDefBuf.KeyBuf[4].KeyFlags = EXTTYPE_KEY |
DUP | MOD;
222

Btrieve API Code Samples
 FileDefBuf.KeyBuf[4].KeyType = DATE_TYPE;

 //
 //--

 FilebufLen = sizeof(FileDefBuf);
 KeyNum = 0; // Overwrite trans
 strcpy(CustFileLocation, szCustomerFileName);
 iStatus = BTRV(B_CREATE,
 CustPosBlock,
 &FileDefBuf,
 &FilebufLen,
 CustFileLocation,
 KeyNum);
 return(iStatus);
} //CreateCustomerFile()

Sample Structures (Creating a File)
These are the sample structures used in the previous code sample for
Visual Basic, Delphi, and C/C++, respectively.

Visual Basic (Creating a File) – Sample Structure

Declare Function BTRCALL Lib "w3btrv7.dll" (ByVal
OP, ByVal Pb$, _

Db As Any, DL As Long, Kb As Any, ByVal Kl, _
ByVal Kn) As Integer

Declare Sub CopyMemory Lib "KERNEL32" Alias
"RtlMoveMemory" _

(hpvDest As Any, hpvSource As Any, ByVal cbCopy
As Long)

Type OrderRecordBufferType
OrderNumberAs typ_byte4 '4 byte unsigned
ContactNumber As typ_byte4 '4 byte unsigned
OrderDateAs DateType
OrderTotal As typ_byte4 '4 byte real
NotUsed As String * 64

End Type

Type OrderKeyBufferType
BufferValue(255) As Byte
OrderNumber As typ_byte4
CustNumber As typ_byte4
NotUsed As String * 64

End Type
223

Btrieve API Programming
Type FileSpec
RecLenAs Integer
PageSize As Integer
IndxCnt As Integer
NotUsedAs String * 4
FileFlags As Integer
Reserved As String * 2
Allocation As Integer
KeyBuf0 As KeySpec
KeyBuf1 As KeySpec
KeyBuf2 As KeySpec
KeyBuf3 As KeySpec
KeyBuf4 As KeySpec
KeyBuf5 As KeySpec

End Type

Global FileDefinitionBuffer As FileSpec

{The following are the Order table
variables.}
Global OrdPosBlock As Byte(0 to 127)
Global OrdRecPos As typ_byte4
Global OrdRecBuf As
OrderRecordBufferType
Global OrdKeyBuffer As
OrderKeyBufferType
Global OrdFixedRecSize As Long
Global OrdFileLocation As String

Delphi (Creating a File) – Sample Structure

type
CustomerRecordType = packed record
Anything you want…

end; //CustomerRecordType

type
TPositionBlock = array[0..127] of byte;

type
BTI_KEY_DESC = packed record
Position : BTI_SINT;
Length : BTI_SINT;
KeyFlags : BTI_SINT;
NumUnique : BTI_LONG;
ExtKeyType: BTI_BYTE;
NullVal : BTI_BYTE;
Reserv : array [0..1] of BTI_CHAR;
224

Btrieve API Code Samples
KeyNumber : BTI_UBYTE;
ACSNumber : BTI_UBYTE;

end; {BTI_KEY_DESC}

BTI_KEY_ARRAY = array [0..MAX_KEY_SEG - 1] of
BTI_KEY_DESC;

BTI_ACS = array [0..ACS_SIZE - 1] of
BTI_CHAR;

type
FileCreateBuffer = packed record
RecLen : BTI_SINT;
PageSize : BTI_SINT;
NumKeys : BTI_SINT;
Reserved1 : BTI_LONG;
FileFlags : BTI_SINT;
DupPointers: BTI_BYTE;
Reserved2 : BTI_BYTE;
Alloc : BTI_SINT;
Keys : BTI_KEY_ARRAY;
ACS : BTI_ACS;

end; {BTI_FILE_DESC}

Note that the alternate collating sequence (ACS) is placed after the
entire Keys array for ease of definition. Because Btrieve expects the
ACS to immediately follow the last key segment, the ACS must be
moved down to that position within the structure.

C/C++ (Creating a File)– Sample Structure

struct CustRec
{
 anything you want…
} //CustRec
struct date_type
{
 BTI_BYTE day;
 BTI_BYTE month;
 BTI_SINT year;
}; //date_type

struct KeySpec
{
 BTI_SINT KeyPos;
 BTI_SINT KeyLen;
 BTI_SINT KeyFlags;
 BTI_LONG KeyTot;
 BTI_CHAR KeyType;
 BTI_CHAR NulValue;
225

Btrieve API Programming
 BTI_CHAR NotUsed[2];
 BTI_BYTE KeyNumber;
 BTI_BYTE ACSNum;
}; //KeySpec
struct FileDescriptionType
{
 BTI_SINT RecLen;
 BTI_SINT PageSize;
 BTI_SINT IndxCnt;
 BTI_LONG RecTot;
 BTI_SINT FileFlags;
 BTI_BYTE DupPointers;
 BTI_BYTE NotUsed;
 BTI_SINT Allocation;
 KeySpec KeyBuf[119];
}; //FileDescriptionType

Inserting
Records

The Insert (2) operation inserts a record into a file. Before you can
make a call to this API:

The file must be open.

The record to be inserted must be the proper length, and the key
values must conform to the keys defined for the file.

You can insert a row by calling BINSERT with the row to be inserted
in the data buffer. For specific information about this API, refer to
the Btrieve API Guide. The following sample code and sample
structures illustrate how to perform the Insert operation in Visual
Basic, Delphi, and C/C++.

Sample Code
The following sample code illustrates how to insert a record using
the Insert operation.

Visual Basic (Inserting Records)

Delphi (Inserting Records)

C/C++ (Inserting Records)

Visual Basic (Inserting Records)

FillCustBufFromCustomerEdit

InsertCustomerRecord 'BtrCallModule Procedure

Sub FillCustBufFromCustomerEdit()
226

Btrieve API Code Samples
Dim tmplong As Long
Dim StrDay As String * 2
Dim StrMonth As String * 2
Dim StrYear As String * 4

tmplong =
CLng(FormCustomerEdit.EdContactNumber.Text)

CustRecBuf.ContactNumber = ToType4(tmplong)
‘see this function in the Sample Structures
(Inserting Records) Sample
CustRecBuf.ContactName =

FormCustomerEdit.EdContactName.Text
CustRecBuf.CompanyName =

FormCustomerEdit.EdCompanyName.Text
CustRecBuf.Address1 =

FormCustomerEdit.EdAddress1.Text
CustRecBuf.Address2 =

FormCustomerEdit.EdAddress2.Text
CustRecBuf.City =

FormCustomerEdit.EdCity.Text
CustRecBuf.State =

FormCustomerEdit.EdState.Text
CustRecBuf.ZipCode =

FormCustomerEdit.EdZip.Text
CustRecBuf.Country =

FormCustomerEdit.EdCountry.Text
CustRecBuf.SalesRep =

FormCustomerEdit.EdSalesRep.Text
StrDay =

Mid$(FormCustomerEdit.EdContactDate.Text, 1, 2)
StrMonth =

Mid$(FormCustomerEdit.EdContactDate.Text, 4, 2)
StrYear =

Mid$(FormCustomerEdit.EdContactDate.Text, 7, 4)
CustRecBuf.NextContact.Day = CByte(StrDay)
CustRecBuf.NextContact.Month = CByte(StrMonth)
CustRecBuf.NextContact.Year = CInt(StrYear)
CustRecBuf.PhoneNumber =

FormCustomerEdit.EdPhone.Text
CustRecBuf.Notes =

Trim(FormCustomerEdit.EdNotes.Text) & Chr$(0)
FormCustomerEdit.EdRecLength =

Str(CustBufLength)
End Sub

Sub InsertCustomerRecord()
Dim lCustBufLength As Long
Dim iKeyNum As Integer
Dim iKeyBufLen As Integer
227

Btrieve API Programming
lCustBufLength = Len(CustRecBuf) -
MaxNoteFieldSize + _

Len(Trim(CustRecBuf.Notes))
' CustBufLength = 238
iKeyBufLen = KEY_BUF_LEN
iKeyNum = CustKeyBuffer.CurrentKeyNumber
giStatus = BTRCALL(BINSERT, CustPosBlock,

CustRecBuf, _
lCustBufLength,

CustKeyBuffer, iKeyBufLen, iKeyNum)
End Sub

Delphi (Inserting Records)

function InsertCustomerRecord(var
CustPosBlock : TPositionBlock;

CustRec :
CustomerRecordType)

:
SmallInt;
var
CustBufLen : Word;
KeyNum : ShortInt;
CustKeyBuffer: String[255];
begin

{Calculate the total size of variable-length
record}
CustBufLen := SizeOf(CustRec) -
SizeOf(CustRec.Notes) + Length(CustRec.Notes);
KeyNum := -1; {specify "No Currency Change" during
insert}
FillChar(CustKeyBuffer, SizeOf(CustKeyBuffer),
#0); {not needed going in}
Result := BTRV(B_INSERT, //OpCode 2

CustPosBLock, //Already
opened position block

CustRec, //record to be
inserted

CustBufLen, //Length of
new record

CustKeyBuffer[1], //not needed
for NCC insert

KeyNum);
end; {InsertCustomerRecord}

C/C++ (Inserting Records)
228

Btrieve API Code Samples
BTI_SINT InsertCustomerRecord(char
CustPosBlock[POS_BLOCK_SIZE],
 Customer_Record_Type
CustRec)
{
 BTI_WORD CustBufLen;
 char KeyNum; //signed byte
 char CustKeyBuffer[255];
 BTI_SINT iStatus;

 /* Calculate the total size of variable length
record : */
 CustBufLen = sizeof(CustRec) -
sizeof(CustRec.Notes) + strlen(CustRec.Notes);
 KeyNum = -1; //specify "No Currency Change"
during insert
 memset(CustKeyBuffer, sizeof(CustKeyBuffer), 0);
//not needed going in
 iStatus = BTRV(B_INSERT, //OpCode 2
 CustPosBlock, //Already opened
position block
 &CustRec, //record to be
inserted
 &CustBufLen, //Length of new
record
 CustKeyBuffer, //not needed for
NCC insert
 KeyNum);
 PrintStatus("B_INSERT: status = %d", iStatus);
 return(iStatus);
} // InsertCustomerRecord()

Sample Structures (Inserting Records)
These are the sample structures used in the previous code sample for
Visual Basic, Delphi, and C/C++, respectively.

Visual Basic (Inserting Records) – Sample Structure

Global Const BINSERT = 2

‘The following are Customer table data
structures.

Type CustomerRecordBufferType
ContactNumber As typ_byte4
ContactNameAs String * 30
CompanyName As String * 60
229

Btrieve API Programming
Address1 As String * 30
Address2 As String * 30
City As String * 30
StateAs String * 2
ZipCodeAs String * 10
CountryAs String * 3
PhoneNumberAs String * 20
SalesRepAs String * 3
NextContactAs DateType
NotUsedAs String * 12
Notes As String * MaxNoteFieldSize

End Type

‘The following are Customer file variables.
Global CustPosBlockAs Byte(0 to 127)
Global CustRecBuf As CustomerRecordBufferType
Global CustKeyBufferAs CustomerKeyBufferType
Global CustFixedRecSize As Long
Global CustFileLocationAs String
Global CustPositionAs typ_byte4
Global CustPosPercent As typ_byte4

Function ToInt(vValue As typ_byte4) As Long
Dim iInt As Long
CopyMemory iInt, vValue, 4
ToInt = iInt

End Function

Function ToType4(vValue As Long) As typ_byte4
Dim tmpTyp4 As typ_byte4
CopyMemory tmpTyp4, vValue, 4
ToType4 = tmpTyp4

End Function

Delphi (Inserting Records) – Sample Structure

type
CustomerRecordType = packed record
Anything you want…

end; //CustomerRecordType

C/C++(Inserting Records) – Sample Structure

struct CustRec
{
 anything you want…
} //CustRec
230

Btrieve API Code Samples
Updating
Records

The Update (3) operation changes the information in an existing
record. To make this Btrieve call, the file must be open and have
physical currency established. If you want to update a record within
a transaction, you must retrieve the record within the transaction.

For more detailed information about this API, refer to the Btrieve
API Guide. The following sample code and sample structures
illustrate how to perform the Update operation in Visual Basic,
Delphi, and C/C++.

Sample Code
The following sample code illustrates how to modify a file using the
Update operation.

Visual Basic (Updating Records)

Delphi (Updating Records)

C/C++ (Updating Records)

Visual Basic (Updating Records)

FillCustBufFromCustomerEdit
UpdateCustomerRecord 'BtrCallModule Procedure

Sub FillCustBufFromCustomerEdit()
Dim tmplong As Long
Dim StrDay As String * 2
Dim StrMonth As String * 2
Dim StrYear As String * 4

tmplong =
CLng(FormCustomerEdit.EdContactNumber.Text)

CustRecBuf.ContactNumber = ToType4(tmplong)
CustRecBuf.ContactName =

FormCustomerEdit.EdContactName.Text
CustRecBuf.CompanyName =

FormCustomerEdit.EdCompanyName.Text
CustRecBuf.Address1 =

FormCustomerEdit.EdAddress1.Text
CustRecBuf.Address2 =

FormCustomerEdit.EdAddress2.Text
CustRecBuf.City =

FormCustomerEdit.EdCity.Text
CustRecBuf.State =

FormCustomerEdit.EdState.Text
CustRecBuf.ZipCode =

FormCustomerEdit.EdZip.Text
231

Btrieve API Programming
CustRecBuf.Country =
FormCustomerEdit.EdCountry.Text

CustRecBuf.SalesRep =
FormCustomerEdit.EdSalesRep.Text

StrDay =
Mid$(FormCustomerEdit.EdContactDate.Text, 1, 2)

StrMonth =
Mid$(FormCustomerEdit.EdContactDate.Text, 4, 2)

StrYear =
Mid$(FormCustomerEdit.EdContactDate.Text, 7, 4)

CustRecBuf.NextContact.Day = CByte(StrDay)
CustRecBuf.NextContact.Month = CByte(StrMonth)
CustRecBuf.NextContact.Year = CInt(StrYear)
CustRecBuf.PhoneNumber =

FormCustomerEdit.EdPhone.Text
CustRecBuf.Notes =

Trim(FormCustomerEdit.EdNotes.Text) & Chr$(0)
FormCustomerEdit.EdRecLength =

Str(CustBufLength)
End Sub

Sub UpdateCustomerRecord()
Dim lCustBufLength As Long
Dim iKeyBufLen As Integer
Dim iKeyNum As Integer

‘The following syntax updates a customer
record.

lCustBufLength = Len(CustRecBuf) - MaxNoteFieldSize
+ _

Len(Trim(CustRecBuf.Notes))
iKeyBufLen = KEY_BUF_LEN
iKeyNum = CustKeyBuffer.CurrentKeyNumber
giStatus = BTRCALL(bUpdate, CustPosBlock,
CustRecBuf, _

lCustBufLength, CustKeyBuffer,
iKeyBufLen, iKeyNum)
End Sub

Delphi (Updating Records)

function UpdateCustomerRecord(var CustPosBlock:
TPositionBlock;

CustRec :
CustomerRecordType)

:
SmallInt;
var
232

Btrieve API Code Samples
CustBufLen : Word;
KeyNum : ShortInt;
CustKeyBuffer : String[255];
begin
 { Calculate the total size of variable length
record : }
CustBufLen := SizeOf(CustRec) -
SizeOf(CustRec.Notes) + Length(CustRec.Notes);
KeyNum := -1; {specify "No Currency Change" during
update}
FillChar(CustKeyBuffer, SizeOf(CustKeyBuffer),
#0); {not needed going in}
Result := BTRV(B_UPDATE, //OpCode 3

CustPosBLock, //Already
opened position block

CustRec, //new record
CustBufLen, //Length of

new record
CustKeyBuffer[1], //not needed

for NCC update
KeyNum);

end; {UpdateCustomerRecord}

C/C++ (Updating Records)

BTI_SINT UpdateCustomerRecord(char
CustPosBlock[POS_BLOCK_SIZE],
 Customer_Record_Type
CustRec)
{
 BTI_WORD CustBufLen;
 char KeyNum; //signed byte
 char CustKeyBuffer[255];
 BTI_SINT iStatus;
 /* Calculate the total size of variable length
record : */
 CustBufLen = sizeof(CustRec) -
sizeof(CustRec.Notes) + strlen(CustRec.Notes);
 KeyNum = -1; //specify "No Currency Change"
during update
 memset(CustKeyBuffer, sizeof(CustKeyBuffer), 0);
//not needed going in
 iStatus = BTRV(B_UPDATE, //OpCode 3
 CustPosBlock, //Already opened
position block
 &CustRec, //record to be
inserted
 &CustBufLen, //Length of new
record
233

Btrieve API Programming
 CustKeyBuffer, //not needed for
NCC insert
 KeyNum);
 PrintStatus("B_UPDATE: status = %d", iStatus);
 return(iStatus);
} //UpdateCustomerRecord()

Sample Structures (Updating Records)
These are the sample structures used in the previous code sample for
Visual Basic, Delphi, and C/C++, respectively.

Visual Basic (Updating Records) – Sample Structure

Global Const bUpdate = 3

See the Sample Structures (Inserting Records) for the Insert
operation.

Delphi (Updating Records) – Sample Structure

type
CustomerRecordType = packed record
Anything you want…

end; //CustomerRecordType

C/C++ (Updating Records) – Sample Structure

struct CustRec
{
 anything you want…
} //CustRec

Performing
Step
Operations

The Step operations (Step First, Step Next, Step Last, Step Previous)
allow you to retrieve a record into the data buffer. The MicroKernel
does not use a key path to retrieve the record. For more detailed
information about these APIs, refer to the Btrieve API Guide.

The following sample code and sample structures illustrate how to
perform the Step operations in Delphi and C/C++.
234

Btrieve API Code Samples
Note You should never depend on the order in which the records
are returned. The MicroKernel may move a record within the file
at any time. Use Get Operations if you need the records in a
specific order.

Sample Code
The following sample code illustrates how to retrieve a record using
the Step operations.

Delphi (Step Operations)

The following code example returns the record in the first physical
location in the file.

{ Get First physical record from file : }
CustBufLen := SizeOf(CustRec); //Maximum
size of the data record
Status := BTRV(B_STEP_FIRST, //OpCode 33

CustPosBLock, //Already
opened position block

CustRec, //Buffer for
record to be returned in

CustBufLen, //Maximum
length to be returned

CustKeyBuffer[1], //Not needed
in Steps

CustKeyNumber); //Not needed
in Steps

{Get Second record in file: (no guaranteed
order) }
CustBufLen := SizeOf(CustRec); //Reset -
previous Step may have changed it.
Status := BTRV(B_STEP_NEXT, //OpCode 24

CustPosBLock,
CustRec,
CustBufLen,
CustKeyBuffer[1]
CustKeyNumber);

{ Back to the First record : }
CustBufLen := SizeOf(CustRec); //Reset - previous
Step may have changed it.
Status := BTRV(B_STEP_PREV, //OpCode 35
235

Btrieve API Programming
CustPosBLock,
CustRec,
CustBufLen,
CustKeyBuffer[1],
CustKeyNumber);

C/C++ (Step Operations)

/* Get First physical record from file : */
 CustBufLen = sizeof(CustRec); //Maximum size
of the data record
 iStatus = BTRV(B_STEP_FIRST, //OpCode 33
 CustPosBLock, //Already opened
position block
 &CustRec, //Buffer for
record to be returned in
 &CustBufLen, //Maximum length
to be returned
 CustKeyBuffer, //Not needed in
Steps
 KeyNum); //Not needed in Steps
 /* Get Second record in file: (no guaranteed
order) */
 CustBufLen = sizeof(CustRec); //Reset -
previous Step may have changed it.
 iStatus = BTRV(B_STEP_NEXT, //OpCode 24
 CustPosBLock,
 &CustRec,
 &CustBufLen,
 CustKeyBuffer,
 KeyNum);
 /* Back to the First record : */
 CustBufLen = sizeof(CustRec); //Reset -
previous Step may have changed it.
 iStatus = BTRV(B_STEP_PREVIOUS, //OpCode 35
 CustPosBLock,
 &CustRec,
 &CustBufLen,
 CustKeyBuffer,
 KeyNum);

Sample Structures
These are the sample structures used in the previous code sample for
Delphi and C/C++, respectively.

Delphi (Step Operations) – Sample Structure
236

Btrieve API Code Samples
type
CustomerRecordType = packed record
Anything you want…

end; //CustomerRecordType

C/C++ (Step Operations) – Sample Structure

struct CustRec
{
 anything you want…
} //CustRec

Performing Get
Operations

The Get operations allow you to retrieve a record. These operations
require the key buffer parameter to specify which row (or rows) to
return. For more detailed information about these APIs, refer to the
Btrieve API Guide.

The following sample code and sample structures illustrate how to
perform some Get operations in Visual Basic, Delphi, and C/C++.

Sample Code
The following sample code illustrates how to retrieve a file using the
Get operations.

Visual Basic (Get Operations)

Sub LoadContactBox(RecPosition As typ_byte4)
FormBrowseCustomers.lstContact.Clear
GetDirectCustomerRecord 'BtrCallModule Procedure
If giStatus = 0 Then

‘The following syntax writes the contact list
box string.

FormatContListBoxString
If giStatus = 0 Then
PosIndex = 0
PosArray(PosIndex) = RecPosition
FirstRecPosition = RecPosition

End If
Else
FormBrowseCustomers.lblMsg.Caption = "didn't

get record"
End If

‘The following syntax fills the rest of list box.
237

Btrieve API Programming
While giStatus = 0 And PosIndex < CustMaxNumRows
- 1

GetNextCustomerRecord 'BtrCallModule Procedure
If giStatus = 0 Then
'write contact listbox string
FormatContListBoxString

‘The following syntax returns the record
position.

GetPositionCustomerRecord'BtrCallModule
Procedure

If giStatus = 0 Then
PosIndex = PosIndex + 1
PosArray(PosIndex) = RecPosition

‘The following syntax configures the pointers to
the array of the record ‘positions.

Select Case PosIndex
Case 1
SecondRecPosition = RecPosition

Case 10
SecToLastRecPosition = RecPosition

Case 11
LastRecPosition = RecPosition

End Select
End If

End If
Wend
If FormBrowseCustomers.lstContact.ListCount <> 0

Then
FormBrowseCustomers.lstContact.ListIndex = 0
End If

End Sub

Sub GetDirectCustomerRecord()
Dim iKeyBufLen As Integer
Dim iKeyNum As Integer

‘The following syntax retrieves the direct
record by the Record Position.

BufLen = Len(CustRecBuf)
iKeyBufLen = MaxKeyBufLen
iKeyNum = CustKeyBuffer.CurrentKeyNumber

‘The following syntax places the address in the
data buffer.
238

Btrieve API Code Samples
CustRecBuf.Notes = "" 'clear variable length area
before retrieve

LSet CustRecBuf = RecPosition
giStatus = BTRCALL(BGETDIRECT, CustPosBlock, _
CustRecBuf, BufLen, CustKeyBuffer, iKeyBufLen,

iKeyNum)
DBLen = BufLen

End Sub

Sub GetNextCustomerRecord()
Dim iKeyNum As Integer
Dim iKeyBufLen As Integer

‘The following syntax returns the next customer
record.

BufLen = Len(CustRecBuf)
iKeyBufLen = KEY_BUF_LEN
iKeyNum = CustKeyBuffer.CurrentKeyNumber
giStatus = BTRCALL(BGETNEXT, CustPosBlock,

CustRecBuf, _
BufLen, CustKeyBuffer,

iKeyBufLen, iKeyNum)
End Sub

Sub GetPositionCustomerRecord()
Dim iKeyBufLen As Integer
Dim iKeyNum As Integer

‘The following syntax returns the record position.

BufLen = MaxDataBufLen
iKeyBufLen = KEY_BUF_LEN
iKeyNum = CustKeyBuffer.CurrentKeyNumber
giStatus = BTRCALL(BGETPOS, CustPosBlock,

RecPosition, _
BufLen, CustKeyBuffer,

iKeyBufLen, iKeyNum)
End Sub

Delphi (Get Operations)

var
CustKeyBuffer: LongInt;
begin
CustBufLen := SizeOf(CustRec);
CustKeyNumber := 0; {In order by Contact ID}
239

Btrieve API Programming
{The following syntax returns the first record
from the file using the specified} {sort order.}
CustBufLen := SizeOf(CustRec); //Maximum size
of the data record
Status := BTRV(B_GET_FIRST, //OpCode 12

CustPosBLock, //Already
opened position block

CustRec, //Buffer for
record to be returned in

CustBufLen, //Maximum
length to be returned

CustKeyBuffer, //Returns the
key value extracted from the record

CustKeyNumber); //Index order
to use for retrieval

{The following syntax returns the second record
in a file in the specified sort} {order.}
CustBufLen := SizeOf(CustRec); //Reset - previous
Get may have changed it.
Status := BTRV(B_GET_NEXT, //OpCode 6

CustPosBLock,
CustRec,
CustBufLen,
CustKeyBuffer[1],
CustKeyNumber);

{The following syntax returns the previous
record in the file.}
CustBufLen := SizeOf(CustRec); //Reset - previous
Step may have changed it.
Status := BTRV(B_GET_PREV, //OpCode 7

CustPosBLock,
CustRec,
CustBufLen,
CustKeyBuffer[1],
CustKeyNumber);

C/C++ (Get Operations)

/* Get First logical record from file : */
 CustBufLen = sizeof(CustRec); //Maximum size
of the data record
 iStatus = BTRV(B_GET_FIRST, //OpCode 12
 CustPosBLock, //Already opened
position block
 &CustRec, //Buffer for
record to be returned in
240

Btrieve API Code Samples
 &CustBufLen, //Maximum length
to be returned
 CustKeyBuffer, //Returns the
key value extracted from the record
 CustKeyNumber); //Index order
to use for retrieval
 /* Get Second record in file: in order by
chosen key */
 CustBufLen = sizeof(CustRec); //Reset -
previous Get may have changed it.
 iStatus = BTRV(B_GET_NEXT, //OpCode 6
 CustPosBLock,
 &CustRec,
 &CustBufLen,
 CustKeyBuffer,
 CustKeyNumber);
 /* Back to the First record : */
 CustBufLen = sizeof(CustRec); //Reset -
previous Get may have changed it.
 iStatus = BTRV(B_GET_PREVIOUS, //OpCode 7
 CustPosBLock,
 &CustRec,
 &CustBufLen,
 CustKeyBuffer,
 CustKeyNumber);

Sample Structures (Get Operations)
These are the sample structures used in the previous code sample for
Visual Basic and Delphi, respectively.

Visual Basic (Get Operations) – Sample Structure

Global Const BGETNEXT = 6
Global Const BGETDIRECT = 23
Global Const BGETPOS = 22

Delphi (Get Operations) – Sample Structure

type
CustomerRecordType = packed record
Anything you want…

end; //CustomerRecordType

C/C++ (Get Operations) – Sample Structure

struct CustRec
241

Btrieve API Programming
{
 anything you want…
} //CustRec

Chunking,
BLOBs, and
Variable-
Length
Records

Btrieve’s chunk operations allow you to read or write portions of
variable-length records and BLOBs. The maximum record length is
64 GB; however, the maximum fixed-record length is 64 KB (65,535
bytes). Use chunking when you want to access portions of a record
beyond the first 65,535 bytes.

Sample Code
The following sample code illustrates how to handle chunking,
binary large objects (BLOBs), and variable-length records.

Visual Basic (Chunking/BLOBs/Variable-Length Records)

Private Sub LoadImageFromBtrieve()

‘The following syntax returns the image stored in
Btrieve into the file described
‘in the output image text box.

Dim lBytes As Long
Dim lBytesread As Long
Dim sLine As String
Dim lBytesToRead As Long
Dim iKey As Integer
Dim lAddressMode As Long
Dim lNumberOfChunks As Long
Dim lChunkOffset As Long
Dim lChunkAddress As Long
Dim lChunkLength As Long
Dim iNumChunksRead As Integer

GetEqualGraphicRecord 'gets the record and part
of the blob

On Error GoTo FileNotFound

FormCustomerGraphic.MousePointer = 11
lNumberOfChunks = 0
On Error GoTo BMPOpenError
Open txtOutputImage.Text For Binary Access Write

As #1
lBytesread = (BufLen - 68) 'saves the number

of bytes read - fixed length of
242

Btrieve API Code Samples
‘graphic
record.fixed length = 68 bytes on first

‘chunk of graphic
record (GetEqualGraphicRecord

‘above).

sLine = Right(ChunkReadBuffer.ChunkArray,
lBytesread)

Put #1, , sLine 'write the first chunk to
the bmp file.

iNumChunksRead = 1
If giStatus = 22 And (BufLen = MaxChunkSize) Then
GetPositionGraphicRecord 'you have to have

the position of the current record
'before you can do

a get chunk
Do
lNumberOfChunks = 1
lChunkOffset = 0
lChunkAddress = 0
lChunkLength = MaxChunkSize
iNumChunksRead =

iNumChunksRead + 1
ChunkGetBuffer.RecordAddress = GrphPosition

'H80000000 (Get random chunk)

'H40000000 (Next in record bias) causes use of
intrarecord currency.

ChunkGetBuffer.AddressMode =
ToType4((&H80000000 + &H40000000))

ChunkGetBuffer.NumberOfChunks =
ToType4(lNumberOfChunks)

ChunkGetBuffer.ChunkOffset =
ToType4(lChunkOffset)

ChunkGetBuffer.ChunkAddress =
ToType4(lChunkAddress)

ChunkGetBuffer.ChunkLength =
ToType4(lChunkLength)

‘The previous syntax uses the read buffer.
Subsequent get chunks use the entire

‘buffer because the fixed length of the record
was read with the first get chunk

‘GetEqualGraphicRecord

‘The following syntax loads the read buffer with the
get buffer.
243

Btrieve API Programming
CopyMemory ChunkReadBuffer, ChunkGetBuffer,
Len (ChunkGetBuffer)

GetGraphicChunk
If giStatus = 0 Then 'you should get a

103 if you read past the end of the
‘record

If MaxChunkSize <> BufLen Then
sLine = Left(ChunkReadBuffer.ChunkArray,

BufLen)
lBytesread = lBytesread + (BufLen)
Else
sLine = ChunkReadBuffer.ChunkArray
Bytesread = lBytesread + MaxChunkSize

End If
If Len(sLine) > 0 Then
Put #1, , sLine

End If
End If

Loop While (giStatus = 0)
End If
Close #1
On Error Resume Next
Set Image1.Picture =

LoadPicture(txtOutputImage.Text)
FormCustomerGraphic.MousePointer = 0
NumChunks.Text = iNumChunksRead
NumBytes.Text = lBytesread
LastStatus.Text = giStatus
On Error GoTo 0

Exit Sub

‘InvalidPicture:

MsgBox Err.Number & ": " & Err.Description &
vbCrLf & "Load from disk and save", vbOKOnly,
"Invalid Picture in Graphic file"

Resume Next

FileNotFound:
MsgBox Err.Number & ": " & Err.Description,

vbOKOnly, "Graphic Load Error"
FormCustomerGraphic.MousePointer = 0
On Error GoTo 0

BMPOpenError:
MsgBox "Directory for temporary imaging work does

not exist. " & vbCrLf & _

"Please select a valid directory for image out.",
vbOKOnly, "User path error"
244

Btrieve API Code Samples
Screen.MousePointer = vbDefault
On Error GoTo 0

End Sub

Sub GetGraphicChunk()
Dim sKeyBuffer As String
Dim iKeyBufLen As Integer

BufLen = Len(ChunkReadBuffer)
sKeyBuffer = Space$(KEY_BUF_LEN)
iKeyBufLen = KEY_BUF_LEN

{In the following syntax, the key number must be
set to -2 for chunking mode.}

giStatus = BTRCALL(BGETDIRECT, GrphPosBlock,
ChunkReadBuffer, _ BufLen, ByVal

sKeyBuffer, iKeyBufLen, -2)
End Sub

Sample Structures
(Chunking/BLOBs/Variable-Length Records)
These are the sample structures used in the previous code sample for
Visual Basic.

Visual Basic (Chunking/BLOBs/Variable-Length Records) –
Sample Structure

Type GraphicRecordBufferType
ContactNumber As typ_byte4
NotUsed As String * 64

End Type

Type GraphicKeyBufferType
BufferValue(255)As Byte
CurrentKeyNumberAs Integer
ContactNumber As typ_byte4
NotUsed As String * 64

End Type

Type ChunkReadDescriptorNext
ChunkArray As String * MaxChunkSize

End Type

Type ChunkGetDescriptor
RecordAddressAs typ_byte4
245

Btrieve API Programming
AddressModeAs typ_byte4
NumberOfChunks As typ_byte4
ChunkOffsetAs typ_byte4
ChunkLengthAs typ_byte4
ChunkAddress As typ_byte4

End Type

Global ChunkGetBuffer As ChunkGetDescriptor
Global ChunkReadBuffer As ChunkReadDescriptorNext

' Graphic Table Variables
Global GrphPosBlock As Byte(0 to 127)
Global GrphRecBuf As GraphicRecordBufferType
Global GrphKeyBuffer As GraphicKeyBufferType
Global GrphFixedRecSize As Long
Global GrphFileLocation As String
Global GrphKeyNumber As Integer
Global GrphPosition As typ_byte4

Working with
Segmented
Indexes

The following sample code illustrates how to handle segmented
indexes.

Sample Code

Visual Basic (Segmented Indexes)

Sub CreateCustomerFile(CustFileLocation As String)

‘The following syntax creates the customer file
and configures the file

‘specifications.

CustFixedRecSize = Len(CustRecBuf) -
Len(CustRecBuf.Notes)

FileDefinitionBuffer.RecLen = CustFixedRecSize
FileDefinitionBuffer.PageSize = 4096
FileDefinitionBuffer.IndxCnt = 4
FileDefinitionBuffer.FileFlags = VARIABLELENGTH

‘The following defines key specifications.

‘Key 0, by contact number.
FileDefinitionBuffer.KeyBuf0.KeyPos = 1
FileDefinitionBuffer.KeyBuf0.KeyLen = 4
FileDefinitionBuffer.KeyBuf0.KeyFlags = EXTTYPE

+ MODIFIABLE
FileDefinitionBuffer.KeyBuf0.KeyType =

Chr$(BAUTOINC)
246

Btrieve API Code Samples
‘Key 1, by contact name.
FileDefinitionBuffer.KeyBuf1.KeyPos = 5
FileDefinitionBuffer.KeyBuf1.KeyLen = 30
FileDefinitionBuffer.KeyBuf1.KeyFlags = EXTTYPE

+ MODIFIABLE + DUP
FileDefinitionBuffer.KeyBuf1.KeyType =

Chr$(BSTRING)

‘Key 2, by contact name.
FileDefinitionBuffer.KeyBuf2.KeyPos = 35
FileDefinitionBuffer.KeyBuf2.KeyLen = 60
FileDefinitionBuffer.KeyBuf2.KeyFlags = EXTTYPE

+ MODIFIABLE + DUP
FileDefinitionBuffer.KeyBuf2.KeyType =

Chr$(BSTRING)

‘Key 3, by sales representative, by next contact
date.

‘This is a segmented key:
FileDefinitionBuffer.KeyBuf3.KeyPos = 220
FileDefinitionBuffer.KeyBuf3.KeyLen = 3
FileDefinitionBuffer.KeyBuf3.KeyFlags = EXTTYPE

+ _ MODIFIABLE + DUP + SEGMENT
FileDefinitionBuffer.KeyBuf3.KeyType =

Chr$(BSTRING)
FileDefinitionBuffer.KeyBuf4.KeyPos = 223
FileDefinitionBuffer.KeyBuf4.KeyLen = 4
FileDefinitionBuffer.KeyBuf4.KeyFlags = EXTTYPE

+ MODIFIABLE + DUP
FileDefinitionBuffer.KeyBuf4.KeyType =

Chr$(BDATE)

BufLen = Len(FileDefinitionBuffer)
CustFileLocation = CustFileLocation & " "
KeyBufLen = Len(CustFileLocation)
giStatus = BTRCALL(BCREATE, CustPosBlock,

FileDefinitionBuffer, _
BufLen, ByVal CustFileLocation, KeyBufLen, 0)

End Sub

Delphi (Segmented Indexes)

To see code on creating segmented indexes, see “Key 3” in the Delphi
(Creating a File) code sample.

var
247

Btrieve API Programming
CustKeyBuffer : record //
Segmented key buffer

SalesRep : array[0..2] of Char;
NextContact : DateType; //Btrieve

Date structure
end;

CustBufLen: Word;
CustKeyNumber: ShortInt;

begin
CustKeyNumber := 3; //In

order by SalesRep/Date
CustKeyBuffer.SalesRep := ‘TO’; //Look

for person with initials TO
CustKeyBuffer.NextContact.Day := 9; //and

NextContact of 9/9/98
CustKeyBuffer.NextContact.Month := 9;
CustKeyBuffer.NextContact.Year := 1998;

CustBufLen := SizeOf (CustRec);

{The following syntax gets the first record
from the file using the specified}

{sort order (KeyNum) :}
Status := BTRV(B_GET_EQUAL, //OpCode 5

CustPosBLock, //Already
opened position block

CustRec, //Buffer for
record to be returned in

CustBufLen, //Maximum
length to be returned

CustKeyBuffer, //Returns the
key value extracted from the record

CustKeyNumber); //Index order
to use for retrieval

C/C++ (Segmented Indexes)

struct //Segmented key buffer
 {
 char SalesRep[3];
 date_type NextContact; //Btrieve Date
structure
 } CustKeyBuffer;
 BTI_WORD CustBufLen;
 char CustKeyNumber;
 CustKeyNumber = 3; //In order
by SalesRep/Date
248

Btrieve API Code Samples
 CustKeyBuffer.SalesRep = "TO"; //Look for
person with initials TO
 CustKeyBuffer.NextContact.Day = 9; // and
NextContact of 9/9/98
 CustKeyBuffer.NextContact.Month = 9;
 CustKeyBuffer.NextContact.Year = 1998;
 CustBufLen = sizeof(CustRec);
 /* Get First record from file using specified
sort order (KeyNum): */
 iStatus = BTRV(B_GET_EQUAL, //OpCode 5
 CustPosBLock, //Already opened
position block
 &CustRec, //Buffer for
record to be returned in
 &CustBufLen, //Maximum length
to be returned
 CustKeyBuffer, //Specifies the
record to look for
 CustKeyNumber); //Index order
to use for retrieval
249

Btrieve API Programming
Declarations of Btrieve API Functions for Visual Basic
The following are declarations of the Btrieve API functions for Visual
Basic.

Declare Function BTRCALL Lib "w3btrv7.dll" (ByVal OP,
ByVal Pb$, Db As Any, DL As Long, Kb As Any, ByVal Kl,
ByVal Kn) As Integer

Declare Function BTRCALLID Lib "w3btrv7.dll" (ByVal OP,
ByVal Pb$, Db As Any, DL As Long, Kb As Any, ByVal
Kl, ByVal Kn, ByVal ID) As Integer

Declare Sub CopyMemory Lib "KERNEL32" Alias
"RtlMoveMemory" (hpvDest As Any, hpvSource As Any,
ByVal cbCopy As Long)
250

c h a p t e r
12
Creating a Database
A Pervasive PSQL database consists of two basic parts:

A data dictionary that describes the data.

Data files that physically contain your data.

This chapter explains named databases, bound databases, and how
to create a database by creating the data dictionary and creating the
database’s tables, columns, and indexes in the following sections:

Named Databases

Bound Databases

Creating Database Components

Naming Conventions,

Creating a Data Dictionary

Creating Tables

Creating Columns

Creating Indexes
251

Creating a Database
Named Databases
A named database has a logical name that allows users to identify it
without knowing its actual location. When you name a database, you
associate that name with a particular dictionary directory path and
one or more data file paths. When you log in to Pervasive PSQL using
a database name, Pervasive PSQL uses the name to find the
database’s dictionary and data files. Unless your database is named,
you cannot do the following:

Define triggers

Define primary and foreign keys

Bind a database

Suspend a database’s integrity constraints

You use the Pervasive Control Center utility to name existing,
unbound databases and to create new, bound databases. Refer to the
Pervasive PSQL User's Guide for more information.
252

Bound Databases
Bound Databases
Binding a database ensures that the MicroKernel enforces the
database’s defined security, referential integrity (RI), and triggers,
regardless of the method you use to access the data. The MicroKernel
enforces these integrity controls as follows:

When you define security on a bound database, Btrieve users
cannot access it.

When you define security on an unbound database, Btrieve users
can access it.

When no security is defined on a bound database, Btrieve users
can access the data files as follows:

If more than one constraint exists on the bound file, the access
level follows the most restrictive constraint. For example, if a file
has both INSERT and UPDATE triggers defined, then you have
read-only and delete access.

Note Even if you do not bind your database, Pervasive PSQL
automatically stamps a data file as bound if it has a trigger, has a
foreign key, or has a primary key that is referenced by a foreign
key. Thus, a data file may be part of an unbound database, but be
bound. In such cases, the MicroKernel enforces integrity
constraints on the file as if it were part of a bound database.

The dictionary and data files in a bound database cannot be
referenced by other named databases. Also, bound data files cannot
be referenced by other tables in the database.

Bound File’s Constraint Level of Access Using Btrieve

RI constraints defined Users can access and do anything
within RI constraints

INSERT triggers defined Read-only, update, and delete access

UPDATE triggers defined Read-only, insert, and delete access

DELETE triggers defined Read-only, insert, and update access
253

Creating a Database
When you create a bound database or bind an existing database,
Pervasive PSQL stamps every dictionary and data file with the name
of the bound database. Also, Pervasive PSQL stamps every data file
with the name of the table associated with that data file. In addition,
when you add new tables or dictionary files to the database, Pervasive
PSQL automatically binds them.
254

Creating Database Components
Creating Database Components
Use the Pervasive Control Center to create databases. Refer to the
Pervasive Control Center online help for complete instructions on
using this utility or refer to the Pervasive PSQL User's Guide.

To create tables in the database, use the Pervasive Control Center or
the CREATE TABLE syntax defined in SQL Engine Reference. When
you issue a CREATE TABLE statement, you must include commands
that define columns. In addition, you can include commands that
define referential integrity (RI) constraints.
255

Creating a Database
Naming Conventions
When you create a database, Pervasive PSQL allows you to assign a
descriptive name to each database component. Users and
applications refer to the components of the database using these
names. This section outlines the conventions to which you must
adhere when naming database components.

For more information, see Identifier Restrictions by Identifier Type
in Advanced Operations Guide.

Unique Names The following database components must have unique names within
a dictionary:

Tables

Views

Indexes

Keys

User names

Group names

Stored procedures

Triggers

Column names within a single table

Names for parameters and variables must be unique within a SQL
statement. Because Pervasive PSQL keywords are reserved words,
you cannot use them for naming database components or in
parameter names and variables. See SQL Reserved Words in SQL
Engine Reference for a list of reserved keywords.

When a column name is repeated in different tables, you can qualify
it in each table by preceding it with the relevant table name or alias
name. For example, you can refer to the ID column in the Student
table as Student.ID. This is a fully qualified column name, and the
table name (Student) is the column qualifier.

Valid
Characters

Following are the valid characters for the names of database
components at the SQL level, and for variables and parameter
names:

a through z
256

Naming Conventions
A through Z

0 through 9

_ (underscore)

^ (caret)

~ (tilde)

$ (dollar sign)

Note The name of a database component must begin with a
letter. If you specify the name of a database component or a
parameter name that does not follow these conventions, specify
the name in double quotes (such as “name”).

Maximum
Name Lengths

Pervasive PSQL restricts the maximum length of database
component names in a dictionary. See Identifier Restrictions by
Identifier Type in Advanced Operations Guide and Table 19, Limits/
Conditions of Pervasive PSQL Features, in SQL Engine Reference.

Case
Sensitivity

Pervasive PSQL is case-sensitive when you are defining database
component names. If you create a table named TaBLe1, Pervasive
PSQL stores the table name in the dictionary as TaBLe1. With the
exception of user names, user group names, and passwords,
Pervasive PSQL is case-insensitive after you define the component
name. After defining the table TaBLe1, you can refer to it as table1.

User names, user group names, and passwords are case-sensitive in
Pervasive PSQL. For example, when you log in as the master user,
you must specify the user name as Master.

When retrieving data, Pervasive PSQL displays names for tables,
views, aliases, and columns based on the case in which they were
created.

SELECT *
FROM Course#

Pervasive PSQL returns the column names as follows:

"Name", "Description", "Credit_Hours", "Dept_Name"
257

Creating a Database
Creating a Data Dictionary
Pervasive PSQL uses the dictionary to store information about the
database. The dictionary consists of several system tables that
describe the tables and views of your database.

The system tables contain several types of database information,
including table and index definitions, column characteristics, and
integrity and security information. Table 41 describes the system
tables Pervasive PSQL creates.

Because the system tables are part of the database, you can query
them to determine their contents. If you have the appropriate rights,
you can also create system tables or change their contents.

Note Pervasive PSQL does not display some data in the system
tables. For example, information about stored views and
procedures, other than their names, is available only to Pervasive
PSQL. In addition, some data (such as user passwords) displays
in encrypted form.

For a complete reference to the contents of each system table, refer to
the SQL Engine Reference.

Once you have created a dictionary, you can add tables, columns, and
indexes to your database.

Table 41 Pervasive PSQL System Tables

Operation Resulting Table

Create a data dictionary X$File, X$Field, X$Index

Specify column attributes X$Attrib

Create stored SQL procedures X$Proc

Define database security X$User, X$Rights

Define referential constraints X$Relate

Define views X$View

Define triggers X$Trigger, X$Depend
258

Creating a Data Dictionary
To create a named database, perform the following
steps:

Note You must have named databases in order to use some
features, such as referential integrity and triggers.

1 Create a directory in which to store the new dictionary tables.

2 Use the Pervasive Control Center to add a Named Database.
Refer to the Pervasive PSQL User's Guide for more information.

To create a dictionary for an unnamed database,
perform the following steps:

1 Run the Pervasive Control Center.

2 Follow the instructions contained in the Pervasive PSQL User's
Guide for creating a new engine data source and dictionary files.
259

Creating a Database
Creating Tables
When you create a table, you must name it. Each table name must be
unique within a database. For more information about rules for
naming tables, refer to the section Naming Conventions.

When you are deciding which tables to create in your database,
consider that different users can look at data in different
combinations using views. A view looks like a table and can be
treated as a table for most purposes (such as retrieving, updating,
and deleting data). However, a view is not necessarily associated with
a single table; it can combine information from multiple tables. For
more information, refer to Retrieving Data.

You can create a table using Pervasive PSQL Control Center. See To
start Table Editor for a new table in Pervasive PSQL User's Guide.

Aliases You can assign aliases (also called alias names) to table names in the
following elements of statements:

FROM clause of a SELECT or DELETE statement.

INTO clause of an INSERT statement.

List of tables in an UPDATE statement.

Note Aliases apply only to the statement in which you use them.
Pervasive PSQL does not store them in the data dictionary.

An alias can be any combination of up to 20 characters. Always
separate the table name from the alias with a blank. Separate the alias
and the column name with a period (.). Once you specify an alias for
a particular table, you can use it elsewhere in the statement to qualify
column names from that table.

The following example specifies the alias name s for the table Student
and e for the table Enrolls.

SELECT s.ID, e.Grade
FROM Student s, Enrolls e
WHERE s.ID = e.Student_ID#

You can use an alias to do the following:

Replace long table names.
260

Creating Tables
When you are working interactively, using aliases can save typing
time, especially when you need to qualify column names. For
example, the following statement assigns s as the alias for the
Student table, e for the Enrolls table, and c1 for the Class table.
This example uses aliases to distinguish the source of each
column in the selection list and in the WHERE conditions.

SELECT s.ID, e.Grade, c1.ID
FROM Student s, Enrolls e, Class c1
WHERE (s.ID = e.Student_ID) AND
(e.Class_ID = c1.ID)#

Make a statement more readable. Even in statements with only a
single table name, an alias can make the statement easier to read.

Use the table in the outer query in a correlated subquery:

SELECT s.ID, e.Grade, c1.ID
FROM Student s, Enrolls e, Class c1
WHERE (s.ID = e.Student_ID) AND
(e.Class_ID = c1.ID) AND
e.Grade >=

(SELECT MAX (e2.Grade)
FROM Enrolls e2
WHERE e2.Class_ID = e.Class_ID)#
261

Creating a Database
Creating Columns
You create columns when you create a table using a CREATE TABLE
statement, or you can add columns to an existing table using an
ALTER TABLE statement. In either case, you must specify the
following characteristics:

Column name—identifies the column. Each column name
must be unique within a table and the column name cannot
exceed 20 characters. Pervasive PSQL is case-sensitive when
defining database column names, but case-insensitive after you
define the column name. For example, if you create a column
named ColuMN1, the name is stored in the dictionary as
ColuMN1; subsequently, you can refer to it as column1. For more
information about rules for naming columns, refer to the section
Naming Conventions.

Data type—identifies the kind of data to expect, such as a string
of characters or a number, and how much disk storage space to
allocate.

For more information about data types, see the Btrieve API Guide.
262

Creating Indexes
Creating Indexes
Indexes optimize operations that either search for or order by
specific values. Define indexes for any columns on which you
frequently perform either of these operations. Indexes provide a fast
retrieval method for a specific row or group of rows in query
optimization. Pervasive PSQL also uses indexes with referential
integrity (RI). Indexes improve performance on joins and help to
optimize queries. For more information about RI, see Pervasive
PSQL User's Guide.

In Pervasive PSQL databases, the transactional database engine
creates and maintains indexes as part of the physical file for which
they are defined. The transactional database engine performs all
maintenance for Insert, Update, or Delete operations. These
activities are transparent to any Pervasive PSQL application.

To create an index, use a CREATE INDEX statement. This method
creates a named index. You can delete named indexes after you create
them. For more information about dropping indexes, refer to
Chapter 14, Inserting and Deleting Data.

While indexes allow you to sort rows and retrieve individual rows
quickly, they increase the disk storage requirements for a database
and decrease performance somewhat on Insert, Update, and Delete
operations. You should consider these trade-offs when defining
indexes.

The next example uses a CREATE INDEX statement to add an index
to a table that already exists:

CREATE INDEX DeptHours ON Course
(Dept_Name, Credit_Hours)#

Note Be aware that if you use the CREATE INDEX statement on
files that contain a lot of data, execution could take some time to
complete, and other users may not be able to access data in that
file in the meantime.

For detailed information about the CREATE TABLE and CREATE
INDEX statements, refer to the SQL Engine Reference.
263

Creating a Database
Index
Segments

You can create an index on any single column or group of columns
in the same table. An index that includes more than one column is
called a segmented index, in which each column is called an index
segment.

For example, the Person table in the sample database has the
following three indexes:

A segmented index consisting of the Last Name column and the
First Name column.

The Perm_State + Perm_City column.

The ID column.

The number of index segments is affected by the page size of the data
file. See the Btrieve API Guide for more information on how to use
the PAGESIZE keyword. The maximum number of indexes you can
create for a table depends on the page size of its data file and the
number of segments in each index. As Table 42 shows, data files with
page sizes smaller than 4096 bytes cannot contain as many index
segments as a data file with a page size of 4096. The number of index
segments that you may use depends on the file’s page size.

Table 42 Maximum Number of Index Segments per Data File

Page Size (bytes) Maximum Key Segments byFile Version

8.x and prior 9.0 9.5

512 8 8 rounded up2

1,024 23 23 97

1,536 24 24 rounded up2

2,048 54 54 97

2,560 54 54 rounded up2

3,072 54 54 rounded up2

3,584 54 54 rounded up2

4,096 119 119 204

8,192 n/a1 119 420
264

Creating Indexes
In Status Codes and Messages book, see status codes “26: The number
of keys specified is invalid” and “29: The key length is invalid” for
related information about index segments and the transactional
interface.

Using the page size and fixed record length, you can calculate the
efficiency with which data is being stored (such as the number of
wasted bytes per page). By having fewer records per page, you can
improve concurrency where page-level locking is concerned.

By default, Pervasive PSQL creates all tables with a page size of 4096
bytes. However, you can specify a smaller page size using the
PAGESIZE keyword in a CREATE TABLE statement, or you can
create a table using the MicroKernel Database Engine and specify a
smaller page size for that table.

When calculating the total number of index segments defined for a
table, a nonsegmented index counts as one index segment. For
example, if your table has three indexes defined, one of which has
two segments, the total number of index segments is four.

You can use the Pervasive PSQL Control Center to display the
number of defined index segments and the page size of a data file. For
information about this utility, see the Pervasive PSQL User's Guide.

Index
Attributes

When you create an index, you can assign to it a set of qualities, or
attributes. Index attributes determine the modifiability of the index
and how Pervasive PSQL sorts the indexes you define for a table. You
can include parameters specifying index attributes anytime you
create or alter an index definition.

16,384 n/a1 n/a1 420

1”n/a” stands for “not applicable”

2”rounded up” means that the page size is rounded up to the next size
supported by the file version. For example, 512 is rounded up to 1,024,
2,560 is rounded up to 4,096, and so forth.

Table 42 Maximum Number of Index Segments per Data File continued

Page Size (bytes) Maximum Key Segments byFile Version

8.x and prior 9.0 9.5
265

Creating a Database
Indexes can have the following attributes:

Case-sensitivity Determines how Pervasive PSQL evaluates uppercase
and lowercase letters during sorting. By default,
Pervasive PSQL creates case-sensitive indexes. To
create a case-insensitive index, specify the CASE
keyword when you create the index.

Sort order Determines how Pervasive PSQL sorts index column
values. By default, Pervasive PSQL sorts index column
values in ascending order (from smallest to largest). To
create an index that sorts in descending order, specify the
DESC keyword when you create the index.

Uniqueness Determines whether Pervasive PSQL allows multiple
rows to have the same index column value. By default,
Pervasive PSQL creates non-unique indexes. To create
an index that requires unique values, specify the UNIQUE
keyword when you create the index.

Modifiability Determines whether you can modify index column values
after Pervasive PSQL stores the corresponding row. By
default, Pervasive PSQL does not allow changes to index
column values once Pervasive PSQL stores the row. To
create a modifiable index, specify the MOD keyword
when you create the index.

Segmentation Indicates whether the index is segmented (whether it
consists of a group of columns combined into a single
index). By default, Pervasive PSQL creates indexes that
are not segmented. To create a segmented index using
the CREATE TABLE statement, specify the SEG keyword
for each index segment you create, except the last
segment in the index. (The SEG keyword indicates that
the next column specified is a segment of the index you
are creating.)

Because you can create only one index at a time with the
CREATE INDEX command, you do not need to use the
SEG keyword to specify a segmented index. If you
specify more than one column, Pervasive PSQL creates
a segmented index using the columns in the order in
which you specify them.

Partial Indicates whether Pervasive PSQL uses a portion of a
CHAR or VARCHAR column, designated as t he only or
last index column, when the total size of the column(s)
plus overhead is equal to or greater than 255 bytes.

By default, Pervasive PSQL does not create partial
indexes. To create a partial index using the CREATE
INDEX statement, specify the PARTIAL keyword.
266

Creating Indexes
Uniqueness and modifiability apply only to entire indexes. You
cannot apply uniqueness or modifiability to a single index segment
without applying it to the entire index. For example, if you create a
segmented index and specify the MOD keyword for one of the index
segments, you must specify the MOD keyword for every segment.

In contrast, you can apply case-sensitivity, sort order, and
segmentation to individual index segments without affecting the
entire index. For example, you can create a case-insensitive index
segment in an otherwise case-sensitive index.

Partial Indexes apply only to the last column defined in the index, as
long as that column meets the following criteria:

the column is the only column defined in the index, or it is the
last column defined in the index

the last index column is of data type CHAR or VARCHAR

the total size of the index, including column overhead, is equal
to or greater than 255 bytes.

For more information on creating indexes and the attributes
available, see CREATE INDEX in the SQL Engine Reference
267

Creating a Database
268

c h a p t e r
13
Relational Database Design
This chapter includes the following sections:

Overview of Database Design

Stages of Design
269

Relational Database Design
Overview of Database Design
This chapter introduces the fundamental principles of relational
database design. A thorough database design throughout the
development process is critical to successful database functionality
and performance.

The Pervasive Software sample database, DEMODATA, is provided
as part of Pervasive PSQL and is frequently used in the
documentation to illustrate database concepts and techniques. For
definitions of basic relational database concepts, such as table, row,
and column, refer to the glossary provided in the Pervasive PSQL
online help.
270

Stages of Design
Stages of Design
Once you understand the basic structure of a relational database, you
can begin the database design process. Designing a database is a
process that involves developing and refining a database structure
based on the requirements of your business.

Database design includes the following three stages:

1 Conceptual Database Design

2 Logical Database Design

3 Physical Database Design

Conceptual
Design

The first step in the database design cycle is to define the data
requirements for your business. Answering these types of questions
helps you define the conceptual design:

What types of information does my business currently use?

What types of information does my business need?

What kind of information do I want from this system?

What are the assumptions on which my business runs?

What are the restrictions of my business?

What kind of reports do I need to generate?

What will I do with this information?

What kind of security does this system require?

What kinds of information are likely to expand?

Identifying the goals of your business and gathering information
from the different sources who will use the database is an essential
process. With this information you can effectively define your tables
and columns.

Logical Design Logical database design helps you further define and assess your
business’ information requirements. Logical database design
involves describing the information you need to track and the
relationships among those pieces of information.

Once you create a logical design, you can verify with the users of the
database that the design is complete and accurate. They can
determine if the design contains all of the information that must be
271

Relational Database Design
tracked and that it reflects the relationships necessary to comply with
the rules of your business.

Creating a logical database design includes the following steps:

1 Define the tables you need based on the information your
business requires (as determined in the conceptual design).

2 Determine the relationships between the tables. (See the section
Table Relationships for more information.)

3 Determine the contents (columns) of each table.

4 Normalize the tables to at least the third normal form. (See the
section Normalization for more information.)

5 Determine the primary keys. (See the section Keys for more
information.)

6 Determine the values for each column.

Table Relationships
In a relational database, tables relate to one another by sharing a
common column. This column, existing in two or more tables,
allows you to join the tables. There are three types of table
relationships: one-to-one, one-to-many, and many-to-many.

A one-to-one relationship exists when each row in one table has only
one related row in a second table. For example, a university may
decide to assign one faculty member to one room. Thus, one room
can only have one instructor assigned to it at a given time. The
university may also decide that a department can only have one
Dean. Thus, only one individual can be the head of a department.

A one-to-many relationship exists when each row in one table has
many related rows in another table. For example, one instructor can
teach many classes.

A many-to-many relationship exists when a row in one table has
many related rows in a second table. Likewise, those related rows
have many rows in the first table. A student can enroll in many
courses, and courses can contain many students.

Normalization
Normalization is a process that reduces redundancy and increases
stability in your database. Normalization involves determining in
272

Stages of Design
which table a particular piece of data belongs and its relationship to
other data. Your database design results in a data-driven, rather than
process or application-driven, design which provides a more stable
database implementation.

When you normalize your database, you eliminate the following
columns:

Columns that contain more than one non-atomic value.

Columns that duplicate or repeat.

Columns that do not describe the table.

Columns that contain redundant data.

Columns that can be derived from other columns.

First Normal Form

Columns in the first normal form have the following characteristics:

They contain only one atomic value.

They do not repeat.

The first rule of normalization is that you must remove duplicate
columns or columns that contain more than one value to a new table.

Tables normalized to the first normal form have several advantages.
For example, in the Billing table of the sample database, first normal
form does the following:

Allows you to create any number of transactions for each student
without having to add new columns.

Allows you to query and sort data for transactions quickly
because you search only one column (transaction number).

Uses disk space more efficiently because no empty columns are
stored.

Second Normal Form

A table is in the second normal form when it is in the first normal
form and only contains columns that provide information about the
key of the table.

In order to enforce the second rule of normalization, you must move
those columns that do not depend on the primary key of the current
table to a new table.
273

Relational Database Design
A table violates second normal form if it contains redundant data.
This may result in inconsistent data which causes your database to
lack integrity. For example, if a student changes her address, you
must then update all existing rows to reflect the new address. Any
rows with the old address result in inconsistent data.

To resolve these differences, identify data that remains the same
when you add a transaction. Columns like Student Name or Street
do not pertain to the transaction and do not depend on the primary
key, Student ID. Therefore, store this information in the Student
table, not in the transaction table.

Tables normalized to the second normal form also have several
advantages. For example, in the Billing table of the sample database,
second normal form allows you to do the following:

Update student information in just one row.

Delete student transactions without eliminating necessary
student information.

Use disk space more efficiently since no repeating or redundant
data is stored.

Third Normal Form

A table is in the third normal form when it contains only
independent columns.

The third rule of normalization is that you must remove columns
that can be derived from existing columns. For example, for a
student, you do not have to include an Age column if you already
have a Date of Birth column, because you can calculate age from a
date of birth.

A table that is in third normal form contains only the necessary
columns, so it uses disk space more efficiently since no unnecessary
data is stored.

In summary, the rules for the first, second, and third normal forms
state that each column value must be a fact about the primary key in
its entirety, and nothing else.

Keys
An ODBC key is a column or group of columns on which a table’s
referential integrity (RI) constraints are defined. In other words, a
key or combination of keys acts as an identifier for the data in a row.
274

Stages of Design
For more information about referential integrity and keys, refer to
Advanced Operations Guide.

Physical
Design

The physical database design is a refinement of the logical design; it
maps the logical design to a relational database management system.
In this phase, you examine how the user accesses the database. This
step of the database design cycle involves determining the following
types of information:

Data you will commonly use.

Columns requiring indexes for data access.

Areas needing flexibility or room for growth.

Whether denormalizing the database will improve performance.
(To denormalize your database, you reintroduce redundancy to
meet performance.) For more information about normalization,
refer to the section Normalization.
275

Relational Database Design
276

c h a p t e r
14
Inserting and Deleting Data
This chapter includes the following sections:

Overview of Inserting and Deleting Data

Inserting Values

Transaction Processing

Deleting Data

Dropping Indexes

Dropping Columns

Dropping Tables

Dropping an Entire Database
277

Inserting and Deleting Data
Overview of Inserting and Deleting Data
After creating a data dictionary, tables, and columns, you can add
data to the database using SQL Data Manager. SQL statements allow
you to do the following:

Specify literal values to insert.

Select data from other tables and insert the resulting values into
entire rows or specified columns.

When you insert a literal value, it must conform to the specified
column’s data type and length.

You can drop (delete) rows, indexes, columns, or tables from your
database. In addition, you can drop an entire database when you no
longer need it.
278

Inserting Values
Inserting Values
You can use a VALUES clause in an INSERT statement to specify
literal values to insert into a table. The following example inserts a
new row into the Course table of the sample database:

INSERT INTO Course
VALUES ('ART 103', 'Principles of Color', 3, 'Art');

In this example, listing the columns Name, Description,
Credit_Hours, and Dept_Name is optional because the statement
inserts a value for each column in the table, in order. However, a
column list is required if the statement inserted data only into
selected columns instead of the entire row, or if the statement
inserted data into the columns in a different order than is defined in
the table.

For complete information on the INSERT statement, see the
following topic in SQL Engine Reference: INSERT.
279

Inserting and Deleting Data
Transaction Processing
When you attempt to insert data into a table, Pervasive PSQL returns
an error if the data is invalid. Any data inserted before the error
occurred is rolled back. This enables your database to remain in a
consistent state.

You can use transaction processing in a Pervasive PSQL database to
group a set of logically related statements together. Within a
transaction, you can use savepoints to effectively nest transactions; if
a statement in a nesting level fails, then the set of statements in that
nesting level is rolled back to the savepoint. Refer to the following
topics in SQL Engine Reference for information about transaction
processing and savepoints:

START TRANSACTION

COMMIT

ROLLBACK

SAVEPOINT

RELEASE SAVEPOINT
280

Deleting Data
Deleting Data
There are two types of DELETE statements: positioned and searched.

You can use a DELETE statement to delete one or more rows from a
table or an updatable view. To specify specific rows for Pervasive
PSQL to delete, use a WHERE clause in a DELETE statement.

DELETE FROM Class
WHERE ID = 005#

The positioned DELETE statement deletes the current row of a view
associated with an open SQL cursor.

DELETE WHERE CURRENT OF mycursor;

For more information about the DELETE statement, see the
following topic in SQL Engine Reference: DELETE.
281

Inserting and Deleting Data
Dropping Indexes
If you find that you no longer need a named index, use a DROP
INDEX statement to drop it.

DROP INDEX DeptHours#

For more information about the DROP INDEX statement, see the
following topic in SQL Engine Reference: DROP INDEX.
282

Dropping Columns
Dropping Columns
To drop a column from a table, use an ALTER TABLE statement.

ALTER TABLE Faculty
DROP Rsch_Grant_Amount#

This example drops the Rsch_Grant_Amount column from the
Faculty table and deletes the column definition from the data
dictionary.

For more information about the ALTER TABLE statement, see the
following topic in SQL Engine Reference: ALTER TABLE.

Note Be aware that if you use the ALTER TABLE statement on
files that contain a lot of data, execution could take some time to
complete, and other users may not be able to access data in that
file in the meantime.
283

Inserting and Deleting Data
Dropping Tables
To drop a table from the database, use a DROP TABLE statement.

DROP TABLE Student#

This example drops the InactiveStudents table definition from the
data dictionary and deletes its corresponding data file
(INACT.MKD).

For more information about the DROP TABLE statement, see the
following topic in SQL Engine Reference: DROP TABLE.

Note You cannot drop any system tables. Refer to the SQL Engine
Reference for a complete listing of system tables.
284

Dropping an Entire Database
Dropping an Entire Database
When you no longer need a particular database, you can delete it
using the SQL Data Manager in the Pervasive PSQL Control Center.
See the Pervasive PSQL User's Guide for more information.
285

Inserting and Deleting Data
286

c h a p t e r
15
Modifying Data
This chapter contains the following sections:

Overview of Modifying Data

Modifying Tables

Setting Default Values

Using UPDATE
287

Modifying Data
Overview of Modifying Data
After creating a database, you can modify it as follows:

After creating tables, you can modify the table definitions.

After creating columns, you can set optional column attributes.

After adding data to the database, you can modify the data.

You can perform these tasks using the SQL Data Manager. For
information about interactive applications, refer to the Pervasive
PSQL User's Guide. For more information about SQL statements,
refer to the SQL Engine Reference.
288

Modifying Tables
Modifying Tables
You can use an ALTER TABLE statement to modify a table definition
after creating the table. ALTER TABLE statements allow you to add
or drop columns; add or drop primary and foreign keys; and change
the pathname of a table’s data file.

The following example adds a numeric column called
Emergency_Phone to the Tuition table in the sample database.

ALTER TABLE Tuition ADD Emergency_Phone NUMERIC(10,0)#

For more information about columns, refer to Chapter14, Inserting
and Deleting Data. For more information about primary and foreign
keys, refer to Chapter 18, Managing Data
289

Modifying Data
Setting Default Values
Pervasive PSQL inserts a default value if you insert a row but do not
provide a value for that column. Default values ensure that each row
contains a valid value for the column.

In the Person table of the sample database, all students live in a state.
Setting a default value such as TX for the State column ensures that
the most probable value is always entered for that column.

To set a default value for a column, use a DEFAULT statement in the
CREATE TABLE statement:

CREATE TABLE MyTable(c1 CHAR(3) DEFAULT ’TX’, ID
INTEGER)#
SELECT * FROM MyTable#

Result of SELECT Statement:

"c1", "ID"
"TX", "1234"
1 row fetched from 2 columns
290

Using UPDATE
Using UPDATE
You can use an UPDATE statement to change the data in a row that
is already in a table. UPDATE statements let you modify specific
columns in a row. Also, you can use a WHERE clause in an UPDATE
statement to specify which rows for Pervasive PSQL to change. This
is referred to as a searched update. Using SQL declared cursors and
the Positioned UPDATE statement, you can update the current row
of a declared cursor from which you are fetching data.

UPDATE Course
SET Credit_Hours = 4
WHERE Course.Name = 'Math'#

This example instructs Pervasive PSQL to find the row that contains
the course name Math and change the Credit Hours column value to
4.

As shown in the previous example, you can use a constant to update
a column by placing it on the right hand side of a SET clause in an
UPDATE statement.
291

Modifying Data
292

c h a p t e r
16
Retrieving Data
The remainder of this chapter discusses how you can use SELECT
statements to accomplish these tasks in the following sections:

Overview of Retrieving Data

Views

Selection Lists

Sorted and Grouped Rows

Joins

Subqueries

Restriction Clauses

Functions
293

Retrieving Data
Overview of Retrieving Data
Once your database contains data, you can retrieve and view that
data using a SELECT statement. Pervasive PSQL returns the data you
request in a result table. Using SQL statements, you can do the
following:

Create temporary views or permanent (stored) views.

Specify a selection list that lists the columns to retrieve from one
or more tables in your database.

Specify how to sort the rows.

Specify criteria by which to group the rows into subsets.

Assign a temporary name (alias) to a table.

Retrieve data from one or more tables and present the data in a
single result table (a join).

Specify a subquery within a SELECT statement.

Specify a restriction clause to restrict the rows Pervasive PSQL
selects.
294

Views
Views
A view is the mechanism for examining the data in your database. A
view can combine data from multiple tables or can include only
certain columns from a single table. Although a view looks like a
table, it consists of a selected set of columns or calculations based on
those columns from tables in your database. Thus, a view may
contain data from columns in more than one table or data that is not
actually in any table at all (for example, SELECT COUNT (*) FROM
Person).

Features of
Views

Following are some of the features of views:

You can arrange the columns of a view in any order except that
the variable-length column must be last. You can specify only
one variable-length column.

You can use a restriction clause to specify the set of rows that
Pervasive PSQL returns in a view. The restriction clause lists
criteria that the data must satisfy to be included in the view. For
more information, see the section Restriction Clauses.

You can design and customize views for each user and
application that accesses the database. You can store these view
definitions within the data dictionary for later recall.

You can include any number of stored view names in a table list
when retrieving, updating, or deleting data unless the view is a
read-only view. In a read-only view, you can only retrieve data.

In a stored view, you must provide headings for the view’s
computed columns and constants and use those names in a list
of column names when you retrieve data from the view.

Temporary and
Stored Views

You can use SELECT statements to create temporary views or stored
views. You use a temporary view only once and then release it.
Pervasive PSQL places the definition of a stored view in the data
dictionary (X$Proc) so you can recall the view later. You use
CREATE VIEW statements to create and name stored views.

Each view name must be unique within a database and cannot
exceed 20 characters. For more information about rules for naming
views, refer to Chapter 14, Inserting and Deleting Data.
295

Retrieving Data
Pervasive PSQL is case-sensitive when defining database element
names. If you create a stored view named PhoNE, Pervasive PSQL
stores the view name in the data dictionary as PhoNE. Pervasive
PSQL is case-insensitive after you define the view name. After
defining the stored view PhoNE, you can refer to it as phone.

Using stored views provides the following features:

You can store frequently executed queries and name them for
later use. The following example creates a stored view named
Phones based on the Department table.

CREATE VIEW Phones (PName, PPhone)
AS SELECT Name, Phone_Number
FROM Department#

You can specify the name of the stored view in table lists when
retrieving, updating, and deleting data. The stored view behaves
as though it is a table in the database, but it is actually
reconstructed internally by the Pervasive PSQL engine each time
it is used. The following example updates the phone number for
the History Department in the Department table by referring to
the stored view Phones.

UPDATE Phones
SET PPhone = '5125552426'
WHERE PName = 'History'#

You can specify headings. A heading specifies a column name
that is different from the name you defined for the column in the
dictionary. The following example specifies the headings
Department and Telephone for the stored view Phones.

CREATE VIEW Dept_Phones (Department, Telephone)
AS SELECT Name, Phone_Number
FROM Department#

You can use the headings in subsequent queries on the view, as
in the following example.

SELECT Telephone
FROM Dept_Phones#

If the selection list contains simple column names and you do
not provide headings, Pervasive PSQL uses the column name as
the column heading.

You must use headings to name constants and computed
columns that you include in the view. The following example
creates the headings Student and Total.
296

Views
CREATE VIEW Accounts (Student, Total)
AS SELECT Student_ID, SUM (Amount_Paid)
FROM Billing
GROUP BY Student_ID#

You must also use headings if you specify SELECT * from
multiple tables that have any duplicate column names.

You can create customized views for each user or application that
accesses the database. You can store these view definitions within
the data dictionary for later recall.

Read-Only
Tables in Views

You cannot insert, update, or delete rows from views that contain
read-only tables. (Here the term update refers to insert, update, and
delete; if a table is read-only, you cannot update it.) Some tables are
read-only whether or not they are in views that are specified as such;
such tables are intrinsically read-only, and you cannot update them.
A table is read-only if it meets one of the following criteria:

The database has security enabled, and the current user or user
group has only SELECT rights defined for the database or the
table.

The data files have been flagged read-only at the physical file
level (for example, using the ATTRIB command under DOS or
Windows or the chmod command in Linux).

You execute a SELECT clause that creates a view and contains
any of the following items:

An aggregate function in the selection list.

A GROUP BY or HAVING clause.

A UNION.

The DISTINCT keyword.

You execute a SELECT statement that creates a view, and the
table contains any of the following characteristics:

It appears in a non-mergeable view that is in the SELECT
statement’s FROM clause.

It is a system table. System tables are always opened as read-
only in a view, even if this overrides the view’s open mode.

A column from the table appears in a computed column or
a scalar function in the selection list.
297

Retrieving Data
The table appears in the FROM clause of a subquery that is
not correlated to the outermost query. A subquery can be
directly or indirectly correlated to the outermost query. A
subquery is directly correlated with the outermost query if it
contains a reference to a column from a table and its specific
occurrence in the outermost query’s FROM clause. A
subquery is indirectly correlated to the outermost query if it
is correlated to a subquery that is in turn directly or
indirectly correlated to the outermost query.

The open mode is read-only.

You execute a Positioned UPDATE statement with any of the
following keywords, without specifying FOR UPDATE:

ORDER BY

SCROLL

Mergeable
Views

A view is mergeable if you can rewrite the SELECT statement using
only base tables and columns.

For example, if you want to know how many students are in a class,
you can define a view to calculate that. The view NumberPerClass is
defined as follows:

CREATE VIEW NumberPerClass (Class_Name,
Number_of_Students)

AS SELECT Name, COUNT(Last_Name)
FROM Person, Class, Enrolls
WHERE Person.ID = Enrolls.Student_ID
AND Class.ID = Enrolls.Class_ID
GROUP BY Name#

The view NumberPerClass is defined as follows:

SELECT *
FROM NumberPerClass#

The view NumberPerClass is then mergeable because we can rewrite
the SELECT statement as follows:

SELECT Name, COUNT(Last_Name)
FROM Person, Class, Enrolls
WHERE Person.ID = Enrolls.Student_ID
AND Class.ID = Enrolls.Class_ID
GROUP BY NAME#

The view NumberPerClass is non-mergeable if you want to write a
SELECT statement such as the following:
298

Views
SELECT COUNT(Name)
FROM NumberPerClass
WHERE Number_of_Students > 50#

This statement is invalid for the view NumberPerClass. You cannot
rewrite it using only base tables and base columns.

A view is mergeable if it does not contain any of the following
characteristics:

It refers to a non-mergeable view.

It has an aggregate function in its selection list or a DISTINCT
keyword, and it appears in the FROM clause of a SELECT
statement that has an aggregate in its selection list.

It has a DISTINCT keyword and appears in the FROM clause of
a SELECT statement that has more than one item in its FROM
clause, does not have an aggregate in its selection list, and does
not have a DISTINCT keyword.

It has an aggregate in its selection list and appears in the FROM
clause of a SELECT statement that either has more than one item
in its FROM clause or a WHERE clause restriction.
299

Retrieving Data
Selection Lists
When you use a SELECT statement to retrieve data, you specify a list
of columns (a selection list) to include in the result table. To retrieve
all the columns in a table or tables, you can use an asterisk (*) instead
of a list of columns.

Note Avoid using * in place of the list. Using * can expose an
application to potential problems if the number of columns or
column sizes in a table changes. Also, it typically returns
unnecessary data.

The following example selects three columns from the Class table.

SELECT Name, Section, Max_Size
FROM Class;

The following example selects all columns from the Class table.

SELECT * FROM Class;

When retrieving data, Pervasive PSQL displays column names based
on how you specify the names in the query.

If you explicitly specify a column name, Pervasive PSQL returns
it as you entered it. The following example specifies column
names in all lowercase.

SELECT name, section, max_size FROM Class#

Pervasive PSQL returns the column names as follows:

"Name", "Section", "Max_Size"

These column names are headings for the returned data; they are
not data themselves.

The following example defines aliases for the tables Department
and Faculty.

SELECT d.Name, f.ID FROM Department d, Faculty f;

Pervasive PSQL returns the column names as follows:

"Name", "ID"

If you use * to specify column names, they appear in all
uppercase, as in the following example.
300

Selection Lists
SELECT * FROM Department;

Pervasive PSQL returns the column names as follows:

"Name", "Phone_Number", "Building_Name",

"Room_Number", "Head_Of_Dept"

The following example defines aliases for the tables Department
and Faculty.

SELECT * FROM Department d, Faculty f;

Pervasive PSQL returns the column names as follows:

"Name"
"Phone_Number"
"Building_Name"
"Room_Number"
"Head_Of_Dept"
"ID"
"Dept_Name"
"Designation"
"Salary"
"Building_Name"
"Room_Number"
"Rsch_Grant_Amount"
301

Retrieving Data
Sorted and Grouped Rows
Once you have decided what data to include in your result table, you
can specify how to order the data. You can use the ORDER BY clause
to sort the data, or you can use a GROUP BY clause to group rows by
a certain column. When you group the data, you can also use
aggregate functions to summarize data by group. For more
information about aggregate functions, refer to the section
Aggregate Functions.

The following example orders all rows by last name in the Person
table of the sample database.

SELECT *
FROM Person
ORDER BY Last_Name#

The following example groups the results by the Building Name
column in the Room table. This example also uses two aggregate
functions, COUNT and SUM.

SELECT Building_Name, COUNT(Number), SUM(Capacity)
FROM Room
GROUP BY Building_Name;
302

Joins
Joins
A join results from a statement that combines columns from two or
more tables into a single view. From this view, you can retrieve,
insert, update, or delete data, provided it is not read-only.

Note This section primarily discusses joining tables using
SELECT statements. However, you can also create joins with
INSERT, UPDATE, and DELETE statements by applying a single
statement to more than one table. SQL Engine Reference
describes these SQL statements and how to optimize joined
views.

You can retrieve data from tables by listing each table or view name
in a FROM clause. Use a WHERE clause to specify one or more join
conditions. A join condition compares an expression that references
a column value from one table to an expression that references a
column value from another table.

When data is properly normalized, most joins associate values based
on some specified key value. This allows you to extract data in terms
of referential integrity relationships. For example, if you want to
know which professor teaches each class, you can create a join based
on the Faculty ID, which is a foreign key in the Class table and a
primary key in the Person table:

SELECT DISTINCT Class.Name, Person.Last_Name
FROM Class, Person, Faculty
WHERE Class.Faculty_ID = Person.ID
AND Class.Faculty_ID = Faculty.ID;

This example joins two tables on the basis of common values in a
common column: Faculty ID.

You can also join tables by making numeric comparisons between
columns of like data types. For example, you can compare columns
using <, >, or =. The following self-join on the Faculty table
identifies all faculty members whose salary was higher than each
faculty member (this would produce considerably more records than
the faculty table contains):

SELECT A.ID, A.Salary, B.ID, B.Salary
FROM Faculty A, Faculty B
WHERE B.Salary > A.Salary;
303

Retrieving Data
Similar comparisons of dates, times, and so forth can produce many
useful and meaningful results.

When joining columns, choose columns that are of the same data
type when possible. For example, comparing two NUMERIC
columns is more efficient than comparing a NUMERIC column with
an INTEGER column. If the columns are not of the same data type
but are both numeric or strings, Pervasive PSQL scans both the
tables and applies the join condition as a restriction to the results.

When you use string type columns in a WHERE clause, one column
in the join condition can be a computed string column. This allows
you to concatenate two or more strings and use a join condition to
compare them to a single string from another table.

The way in which Pervasive PSQL handles a join depends on whether
the join condition contains an index column.

If the join condition contains a column that is defined as an index,
performance improves. Using the index to sort rows in the
corresponding table, Pervasive PSQL selects only rows that meet
the restriction clause condition.

If the join condition does not contain a column that is defined as an
index, performance is less efficient. Pervasive PSQL reads each
row in each table to select rows that meet the restriction clause
condition. To enhance performance, you can create an index in
one of the tables before executing the join. This is especially
helpful if the query is one that you perform often.

Joining Tables
with Other
Tables

To specify a join using a SELECT statement, use a FROM clause to
list the relevant tables and a WHERE clause to specify the join
condition and the restriction. The following example also uses
aliases to simplify the statement.

SELECT Student_ID, Class_ID, Name
FROM Enrolls e, Class cl
WHERE e.Class_ID = cl.ID;

The next example joins three tables:

SELECT p.ID, Last_Name, Name
FROM Person p, Enrolls e, Class cl
WHERE p.ID = e.Student_ID AND e.Class_ID = cl.ID;

The next example retrieves a list of students who received a grade
lower than a 3.0 in English.
304

Joins
SELECT First_Name, p.Last_Name
FROM Person p, Student s, Enrolls e, Class cl
WHERE s.ID = e.Student_ID
 AND e.Class_ID = cl.ID
 AND s.ID = p.ID
 AND cl.Name = 'ACC 101'
 AND e.Grade < 3.0;

In this example, the first three conditions in the WHERE clause
specify the join between the four tables. The next two conditions are
restriction clauses connected by the Boolean operator AND.

Joining Views
with Tables

To join a view with one or more tables, include a view name in the
FROM clause. The view you specify can include columns from a
single table or from several joined tables.

Types of Joins Pervasive PSQL supports equal joins, nonequal joins, null joins,
Cartesian product joins, self joins, and left, right, and full outer joins.

For more information on the syntax of joins, see the following topics:

In SQL Engine Reference: SELECT

In SQL Engine Reference: JOIN

Equal Joins
An equal join occurs when you define the two join columns as equal.
The following statement defines an equal join.

SELECT First_Name, Last_Name, Degree, Residency
FROM Person p, Student s, Tuition t
WHERE p.ID = s.ID AND s.Tuition_ID = t.ID;

Nonequal Joins
You can join tables based on a comparison operation. You can use
the following operators in nonequal joins:

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal
305

Retrieving Data
The following WHERE clause illustrates a join that uses a greater
than or equal operator.

SELECT Name, Section, Max_Size, Capacity,
r.Building_Name, Number
FROM Class cl, Room r
WHERE Capacity >= Max_Size;

Cartesian Product Joins
A Cartesian product join associates each row in one table with each
row in another table. Pervasive PSQL reads every row in one table
once for each row in the other table.

On large tables, a Cartesian product join can take a significant
amount of time to complete since Pervasive PSQL must read the
following number of rows to complete this type of join:

(# of rows in one table) * (# of rows in another table)

For example, if one table contains 600 rows and the other contains
30, Pervasive PSQL reads 18,000 rows to create the Cartesian product
join of the tables.

The following statement produces a Cartesian product join on the
Person and Course tables in the sample database:

SELECT s.ID, Major, t.ID, Degree, Residency,
Cost_Per_Credit
FROM Student s, Tuition t#

Self Joins
In a self join, you can specify a table name in the FROM clause more
than once. When you specify a self join, you must assign aliases to
each instance of the table name so that Pervasive PSQL can
distinguish between each occurrence of the table in the join.

The following example lists all the people who have a permanent
address in the same state as the person named Jason Knibb. The
query returns the ID, first name, last name, current phone number,
and e-mail address.

SELECT p2.ID, p2.First_Name, p2.Last_Name, p2.Phone,
p2.EMail_Address
FROM Person p1, Person p2
WHERE p1.First_Name = 'Jason' AND p1.Last_Name = 'Knibb'

and p1.Perm_State = p2.Perm_State
306

Joins
Left, Right, Full Outer Joins
Information about outer joins can be found in SQL Engine Reference.
In SQL Engine Reference, see SELECT and JOIN.
307

Retrieving Data
Subqueries
A subquery (also known as a nested query) is a SELECT statement
contained within one of the following:

The WHERE clause or HAVING clause of another SELECT
statement.

The WHERE clause of an UPDATE or DELETE statement.

A subquery allows you to base the result of a SELECT, UPDATE, or
DELETE statement on the output of the nested SELECT statement.

Except in correlated subqueries, when you issue a subquery Pervasive
PSQL parses the entire statement and executes the innermost
subquery first. It uses the result of the innermost subquery as input
for the next level subquery, and so forth.

For more information about expressions you can use with
subqueries, refer to the SQL Engine Reference.

Subquery
Limitations

A subquery in a WHERE clause becomes part of the search criteria.
The following limits apply to using subqueries in SELECT, UPDATE,
and DELETE statements:

You must enclose the subquery in parentheses.

The subquery cannot contain a UNION clause.

Unless you use an ANY, ALL, EXISTS, or NOT EXISTS keyword
in the WHERE clause of the outer query, the selection list of the
subquery can contain only one column name expression.

You can nest several levels of subqueries in a statement. The number
of subqueries you can nest is determined by the amount of memory
available to Pervasive PSQL.

Correlated
Subqueries

A correlated subquery contains a WHERE or HAVING clause that
references a column from a table in the outer query’s FROM clause;
this column is called a correlated column. To test the results from a
subquery against the results from the outer query, or to test for a
particular value in a query, you must use a correlated subquery.

Since the correlated column comes from the outer query, its value
changes each time a row in the outer query is fetched. Pervasive
PSQL then evaluates the expressions in the inner query based on this
changing value.
308

Subqueries
The following example shows the names of courses that provide
more credit hours than time actually spent in the class room.

SELECT c.Name, c.Credit_Hours
FROM Course c
WHERE c.Name IN

(SELECT c1.Name
FROM Class cl
WHERE c.Name = cl.Name AND c.Credit_Hours >

(HOUR (Finish_Time - Start_Time) + 1))#

To improve performance, you could rephrase the previous statement
as a simple query.c.

SELECT c.Name, c.Credit_Hours
FROM Class c1, Course c
WHERE c1.Name = c.Name AND c.Credit_Hours >

(HOUR (Finish_Time - Start_Time) + 1)#
309

Retrieving Data
Restriction Clauses
A restriction clause is an ASCII text string of operators and
expressions. A restriction clause specifies selection criteria for the
values in the columns of a view, limiting the number of rows the view
contains. The syntax of certain clauses (such as WHERE or
HAVING) requires using a restriction clause. A restriction clause can
specify these conditions:

Restriction condition—Compares an expression that references
a column value to either a constant or another expression that
references a column value in the same table.

Join condition—Compares an expression that references a
column value from one table to an expression that references a
column value from another table.

A restriction clause can contain multiple conditions. It can also
contain a SELECT subquery that bases search criteria on the contents
of other tables in the database. The condition containing the
subquery can contain the EXISTS, NOT EXISTS, ALL, ANY, and
SOME keywords, or the IN range operator.

You can specify a restriction clause using a WHERE or HAVING
clause in a SELECT, UPDATE, or DELETE statement.

Figure 1 provides an example restriction clause and illustrates
restriction clause elements.

Figure 1 Example Restriction Clause

Restriction
Clause
Operators

Restriction clauses can use three types of operators:

Boolean operators — Connect conditions in a restriction clause.

Condition operators — Connect expressions to form a
condition. A condition operator can be a relational or a range
operator.

where table1.field1 > 5
and table1.field2 = table1.field1 * 10
and table1.field1 = table2.field1

Boolean Operators

Restrictio

Condition Operators

Expressio
310

Restriction Clauses
Expression operators — Connect two expressions to form
another expression. An expression operator can be an arithmetic
or string operator.

Boolean Operators
Boolean operators specify logical conditions.

Condition Operators
A condition operator can be a relational or a range operator.

Relational operator—Compares a column value with either
another column value or a constant. If the value of the column is
true, Pervasive PSQL selects the row.

Range operator—Compares a column value with a specified
range of values for the column. If the value of the column is true,
the restriction passes, and Pervasive PSQL selects the row.

Table 44 lists the relational operators.

Table 43 Boolean Operators

Operator Description

AND If all search conditions connected with AND are true, the
restriction passes.

OR If at least one of the conditions connected by OR is true, the
restriction passes.

NOT If the condition is false, the restriction passes.

Table 44 Relational Condition Operators

Operator Description Operator Description

< Less than >= Greater than or equal to

> Greater than != Not equal to

= Equal to <> Not equal to

<= Less than or equal to
311

Retrieving Data
Table 45 lists the condition operators.

With the IN and NOT IN operators, the second expression can be a
subquery instead of a column name or constant.

Expression Operators
Expression operators allow you to create expressions for computed
columns using arithmetic or string operators. For more information,
refer to Functions.

Restriction
Clause
Examples

The following examples demonstrate some of the restriction clause
operators.

OR and Equal To (=)
The following example uses the relational EQUAL TO and boolean
OR operators. It selects all rows in which the value of the State
column is Texas or New Mexico.

SELECT Last_Name, First_Name, State
FROM Person
WHERE State = 'TX' OR State = 'NM'#

Table 45 Range Condition Operators

Operator Description

IN Value exists in specified list.

NOT IN Value does not exist in specified list.

BETWEEN Value exists within specified range.

NOT BETWEEN Value does not exist within specified range.

IS NULL Value is the defined NULL value for the column.

IS NOT NULL Value is not the defined NULL value for the column.

LIKE Value matches specified string. You can substitute two wildcard
characters for actual characters. The percent sign (%)
represents any sequence of n characters (where n can be
zero). The underscore (_) represents a single character.

NOT LIKE Value does not match specified string.
312

Restriction Clauses
IN
The following example uses the IN operator. It selects the records
from the Person table where the first names are Bill and Roosevelt.

SELECT * FROM Person WHERE First_name IN
(’Roosevelt’, ’Bill’)#

LIKE
The following example uses the LIKE operator:

SELECT ID, First_Name, Last_Name, Zip
FROM Person
WHERE Zip LIKE '787%';

This example retrieves records in the Person table where the zip code
begins with ‘787’.
313

Retrieving Data
Functions
Once your database contains data, you can use functions on the data
to return a result for a set of column values (using aggregate
functions) or accept one or more parameters as input and return a
single value (using scalar functions).

Aggregate
Functions

An aggregate function is a function that returns a single result for a
given set of column values. Pervasive PSQL supports the aggregate
functions shown in Table 46.

For more information about each of these functions, refer to the SQL
Engine Reference.

Arguments to
Aggregate
Functions

For AVG and SUM functions, the argument to the function must be
the name of a numeric column. The COUNT, MIN, and MAX
functions can provide results on numeric or non-numeric columns.

You cannot nest aggregate function references. For example, the
following reference is not valid:

Table 46 Aggregate Functions

Function Description

AVG Determines the average of a group of values. If the operand is not
a DECIMAL, then AVG returns an 8-byte FLOAT. If the operand is a
DECIMAL, AVG returns a 10-byte DECIMAL.

COUNT Counts the number of rows in a specified group. COUNT always
returns a 4-byte INTEGER.

DISTINCT Include the DISTINCT keyword in your SELECT statement to direct
Pervasive PSQL to remove duplicate values from the result. By
using DISTINCT, you can retrieve all unique rows that match the
SELECT statement's specifications.

MAX Returns the maximum value of a group of values. MAX returns the
same data type and size as the operand.

MIN Returns the minimum value of a group of values. MIN returns the
same data type and size as the operand.

SUM Determines the sum of a group of values. If the operand is not a
DECIMAL, then SUM returns an 8-byte FLOAT. If the operand is a
DECIMAL, SUM returns a 10-byte DECIMAL.
314

Functions
SUM(AVG(Cost_Per_Credit))

You can use aggregate functions in an expression, as in the following
example:

AVG(Cost_Per_Credit) + 20

You can also use an expression as an argument to a group aggregate
function. For example, the following expression is valid:

AVG(Cost_Per_Credit + 20)

The aggregate functions treat null column values as significant. For
example, on a table that contains 40 rows of data and 5 rows of null
values, the COUNT function returns 45.

You can use the DISTINCT keyword to force Pervasive PSQL to treat
all null column values as a single value. The following example
calculates the average column value in the Grade column:

AVG(DISTINCT Grade)

The DISTINCT keyword affects the AVG, COUNT, and SUM
functions. It has no effect on the MIN and MAX functions.

Aggregate
Function Rules

You can use aggregate functions in a SELECT statement as follows:

As items in the selection list.

In a HAVING clause.

Generally, you use aggregate functions in a SELECT statement that
contains a GROUP BY clause to determine aggregate values for
certain groups of rows. However, if the SELECT statement does not
contain a GROUP BY clause and you want to use aggregate functions
in it, all the items in the selection list must be aggregate functions.

If the SELECT statement does contain a GROUP BY clause, the
column or columns specified in the GROUP BY clause must be select
terms that are single columns, not aggregate functions. All the select
terms that are not also listed in the GROUP BY clause, however, must
be aggregate functions.

The following example returns a result table that allows you to
determine the amount each student has paid.

SELECT Student_ID, SUM(Amount_Paid)
FROM Billing
GROUP BY Student_ID;
315

Retrieving Data
You can also include aggregate functions in HAVING clauses used
with a GROUP BY clause. Using the HAVING clause with a GROUP
BY clause restricts the groups of rows Pervasive PSQL returns.
Pervasive PSQL performs the aggregate function on the column of
each group of rows specified in the GROUP BY clause, and returns a
single result for each set of rows that has the same value for the
grouping column.

In the following example, Pervasive PSQL returns row groups only
for students currently enrolled with more than 15 credit hours:

SELECT Student_ID, SUM(Credit_Hours)
FROM Enrolls e, Class cl, Course c
WHERE e.Class_ID = cl.ID AND cl.Name = c.Name
GROUP BY Student_ID
HAVING SUM(Credit_Hours) > 15;

Scalar
Functions

Scalar functions such as CONCAT and CURDATE accept one or
more parameters as input and return a single value. For example, the
LENGTH function returns the length of a string column value. You
can use scalar functions in Pervasive PSQL statements that allow
computed columns in expressions.

The type of expression operator you can use depends on the type of
result the function returns. For example, if the function returns a
numeric value, you can use arithmetic operators. If the function
returns a string value, you can use string operators.

You can nest scalar functions, but each nested function must return
a result that is an appropriate parameter to the next level scalar
function, as in the following example:

SELECT RIGHT (LEFT (Last_Name, 3), 1)
FROM Person;

Pervasive PSQL executes the LEFT function first. If the value in the
Last Name column is Baldwin, the string resulting from the LEFT
function is Bal. This string is the parameter of the RIGHT function,
which returns ‘l’ as the rightmost character of the string.

You can use scalar functions that return a numeric result within a
computed column that calculates a numeric value. You can also use
scalar functions that return a string value as an expression to another
string function, but the total length of the string result cannot exceed
255 bytes.
316

Functions
In SQL Engine Reference, see Bitwise Operators for complete
information on scalar functions you can use with Pervasive PSQL.
317

Retrieving Data
318

c h a p t e r
17
Storing Logic
This chapter explains how to store SQL procedures for future use and
how to create triggers. For information about stored views, see
Chapter 16, Retrieving Data.

This chapter includes the following sections:

Stored Procedures

SQL Variable Statements

SQL Control Statements

SQL Triggers
319

Storing Logic
Stored Procedures
Using stored procedures, you can group logically associated
programming steps into a general process and then invoke that
process with one statement. You can also execute this process using
different values by passing parameters.

Once invoked, SQL stored procedures are executed in their entirety
without internal communication between a host language program
and the SQL engine. You can invoke them independently, and they
can be invoked as part of the body of other procedures or triggers.
For more information about triggers, refer to the section SQL
Triggers.

You can use SQL variable statements within stored procedures to
store values internally from statement to statement. See the section
SQL Variable Statements for more information about these
statements.

You can use SQL control statements in stored procedures to control
the execution flow of the procedure. For more information about
these statements, refer to the section SQL Control Statements later in
this chapter.

Stored
Procedure and
Positioned
Update

The following is an example of a stored procedure and positioned
update:

DROP PROCEDURE curs1
CREATE PROCEDURE curs1 (in :Arg1 char(4)) AS
BEGIN
DECLARE :alpha char(10) DEFAULT 'BA';
DECLARE :beta INTEGER DEFAULT 100;

DECLARE degdel CURSOR FOR
SELECT degree, cost_per_credit FROM tuition WHERE
Degree = :Arg1 AND cost_per_credit = 100

FOR UPDATE;
OPEN degdel;
FETCH NEXT FROM degdel INTO :alpha,:beta
DELETE WHERE CURRENT OF degdel;
CLOSE degdel;
END

CALL curs1('BA')
320

Stored Procedures
Declaring
Stored
Procedures

To define a stored procedure, use the CREATE PROCEDURE
statement.

CREATE PROCEDURE EnrollStudent (in :Stud_id integer, in
:Class_Id integer);

BEGIN
INSERT INTO Enrolls VALUES (:Stud_id, :Class_Id,
0.0);
END

The maximum size for a stored procedure name is 30 characters.
Parentheses are required around the parameter list, and the
parameter name may be any valid SQL identifier.

Stored procedures must have unique names in the dictionary.

For information about the syntax of the CREATE PROCEDURE
statement, refer to the following topic in SQL Engine Reference:
CREATE PROCEDURE.

Invoking Stored
Procedures

To invoke a stored procedure, use the CALL statement.

CALL EnrollStudent (274410958, 50);

You must define a value for every parameter. You can assign a value
to a parameter using the associated argument in the CALL statement
or with the associated default clause in the CREATE PROCEDURE
statement. An argument value for a parameter in a CALL statement
overrides any associated default value.

You can specify calling values in a CALL statement using either of the
following two ways:

Positional arguments—Allow you to specify parameter values
implicitly based on the ordinal position of the parameters in the
list when the procedure was created.

Keyword arguments—Allow you to specify parameter values
explicitly by using the name of the parameter whose value is
being assigned.

You cannot assign a parameter value twice in the argument list
(either positional or keyword). If you use both positional arguments
and keyword arguments in the same call, the keyword arguments
must not refer to a parameter that receives its value through the
positional arguments. When using keyword arguments, the same
parameter name must not occur twice.
321

Storing Logic
For more information about the syntax of the CALL statement, refer
to the following topic in SQL Engine Reference: CALL.

Deleting Stored
Procedures

To delete a stored procedure, use the DROP PROCEDURE
statement.

DROP PROCEDURE EnrollStudent;

For more information about the syntax of this statement, refer to the
following topic in SQL Engine Reference: DROP PROCEDURE.
322

SQL Variable Statements
SQL Variable Statements
SQL variable statements provide a means to store values internally
from statement to statement. SQL variable statements include the
following statement:

Assignment statement

You can use these statements inside stored procedures.

Procedure-
Owned
Variables

An SQL variable you define inside a stored procedure is a procedure-
owned variable. Its scope is that procedure in which it is declared; you
can only refer to it within that procedure. If a procedure calls another
procedure, the procedure-owned variable of the calling procedure
cannot be directly used in the called procedure; instead, it must be
passed in a parameter. You cannot declare a procedure-owned
variable more than once in the same stored procedure.

If a compound statement is the body of a stored procedure, then no
SQL variable name declared in that procedure can be identical to a
parameter name in the parameter list of that procedure. For more
information about compound statements, refer to Compound
Statement.

Assignment
Statement

The assignment statement initializes or changes the values of SQL
variables. The value expression may be a computed expression
involving constants, operators, and this or other SQL variables.

SET :CourseName = 'HIS305';

The value expression may also be a SELECT statement.

SET :MaxEnrollment = (SELECT Max_Size FROM Class
WHERE ID = classId);

For more information about the syntax of this statement, refer to the
following topic in SQL Engine Reference: SET.
323

Storing Logic
SQL Control Statements
You can only use control statements in the body of a stored
procedure. These statements control the execution of the procedure.
The control statements include the following:

Compound statement (BEGIN...END)

IF statement (IF...THEN...ELSE)

LEAVE statement

Loop statements (LOOP and WHILE)

Compound
Statement

A compound statement groups other statements together.

BEGIN
DECLARE :NumEnrolled INTEGER;
DECLARE :MaxEnrollment INTEGER;

DECLARE :failEnrollment CONDITION
FOR SQLSTATE '09000';

SET :NumEnrolled = (SELECT COUNT (*)
FROM Enrolls
WHERE Class_ID = classId);

SET :MaxEnrollment = (SELECT Max_Size
FROM Class
WHERE ID = classId);

IF (:NumEnrolled >= :MaxEnrollment) THEN
SIGNAL :failEnrollment ELSE
SET :NumEnrolled = :NumEnrolled + 1;
END IF;

END

You can use a compound statement in the body of a stored procedure
or a trigger. For more information about triggers, see the section
SQL Triggers.

Although you can nest compound statements within other
compound statements, only the outermost compound statement can
contain DECLARE statements.

For more information about the syntax of compound statements,
refer to the following topic in SQL Engine Reference: BEGIN
[ATOMIC].
324

SQL Control Statements
IF Statement An IF statement provides conditional execution based on the truth
value of a condition.

IF (:counter = :NumRooms) THEN
LEAVE Fetch_Loop;

END IF;

For more information about the syntax of the IF statement, refer to
the following topic in SQL Engine Reference: IF.

LEAVE
Statement

A LEAVE statement continues execution by leaving a compound
statement or loop statement.

LEAVE Fetch_Loop

A LEAVE statement must appear inside a labeled compound
statement or a labeled loop statement. The statement label from the
LEAVE statement must be identical to the label of a labeled statement
containing LEAVE. This label is called the corresponding label.

Note A compound statement can contain a loop statement;
therefore, since you can embed loop statements, the statement
label in a LEAVE statement can match the label of any of the
embedded loops or the label of the body of the stored procedure.

For more information about the syntax of the LEAVE statement,
refer to the following topic in SQL Engine Reference: LEAVE.

LOOP
Statement

A LOOP statement repeats the execution of a block of statements.

FETCH_LOOP:
LOOP

FETCH NEXT cRooms INTO CurrentCapacity;

IF (:counter = :NumRooms) THEN
LEAVE FETCH_LOOP;
END IF;

SET :counter = :counter + 1;
SET :TotalCapacity = :TotalCapacity +
:CurrentCapacity;

END LOOP;

If each statement in the SQL statement list executes without error
and Pervasive PSQL does not encounter a LEAVE statement or
invoke a handler, then execution of the LOOP statement repeats. A
325

Storing Logic
LOOP statement is similar to a WHILE statement in that execution
continues while a given condition is true.

If a LOOP statement has a beginning label, it is called a labeled LOOP
statement. If you specify the ending label, then it must be identical to
the beginning label.

For more information about the syntax of the LOOP statement, refer
to the following topic in SQL Engine Reference: LOOP.

WHILE
Statement

A WHILE statement repeats the execution of a block of statements
while a specified condition is true.

FETCH_LOOP:
WHILE (:counter < :NumRooms) DO

FETCH NEXT cRooms INTO :CurrentCapacity;
IF (SQLSTATE = '02000') THEN
LEAVE FETCH_LOOP;

END IF;

SET :counter = :counter + 1;
SET :TotalCapacity = :TotalCapacity +
:CurrentCapacity;

END WHILE;

Pervasive PSQL evaluates the Boolean value expression. If it is true,
then Pervasive PSQL executes the SQL statement list. If each
statement in the SQL statement list executes without error and no
LEAVE statement is encountered, then execution of the loop
statement repeats. If the Boolean value expression is false or
unknown, Pervasive PSQL terminates execution of the loop
statement.

If a WHILE statement has a beginning label, it is called a labeled
WHILE statement. If you specify an ending label, it must be identical
to the beginning label. For more information about the syntax of the
WHILE statement, refer to the following topic in SQL Engine
Reference: WHILE.
326

SQL Triggers
SQL Triggers
Triggers are actions defined on a table that you can use to enforce
consistency rules for a database. They are dictionary objects that
identify the appropriate action for the DBMS to perform when a user
executes a SQL data modification statement on that table.

To declare a trigger, use the CREATE TRIGGER statement.

CREATE TRIGGER CheckCourseLimit;

The maximum size for a trigger name is 30 characters.

To delete a trigger, use the DROP TRIGGER statement.

DROP TRIGGER CheckCourseLimit;

You cannot invoke a trigger directly; they are invoked as a
consequence of an INSERT, UPDATE, or DELETE action on a table
with an associated trigger. For more information about the syntax of
these statements, refer to the following topics in SQL Engine
Reference:

CREATE TRIGGER

DROP TRIGGER

INSERT

UPDATE

DELETE

Note In order to prevent circumvention of triggers, Pervasive
PSQL stamps the data file containing a trigger as a bound data
file; this restricts access to Btrieve users and prevents the Btrieve
user from performing an action that would fire the trigger in a
Pervasive PSQL database. For more information, refer to SQL
Engine Reference.

Timing and
Ordering of
Triggers

Since triggers execute automatically for a given event, it is important
to be able to specify when and in what order the trigger or triggers
should execute. You specify time and order when you create the
trigger.
327

Storing Logic
Specifying the Triggered Action Time
When an event that is associated with a trigger occurs, the trigger
must execute either before the event or after the event. For example,
if an INSERT statement invokes a trigger, the trigger must execute
either before the INSERT statement executes or after the INSERT
statement executes.

CREATE TABLE Tuitionidtable (primary key(id), id
ubigint)#

CREATE TRIGGER InsTrig
BEFORE INSERT ON Tuition
REFERENCING NEW AS Indata
FOR EACH ROW
INSERT INTO Tuitionidtable VALUES(Indata.ID);

You must specify either BEFORE or AFTER as the triggered action
time. The triggered action executes once for each row. If you specify
BEFORE, the trigger executes before the row operation; if you specify
AFTER, the trigger executes after the row operation.

Note Pervasive PSQL does not invoke a trigger by enforcing an
RI constraint. Also, a table may not have a DELETE trigger
defined if an RI constraint may also cause the system to perform
cascaded deletes on that table.

Specifying Trigger Order
You may have situations in which an event invokes more than one
trigger for the same specified time. For example, an INSERT
statement may invoke two or more triggers that are defined to
execute after the INSERT statement executes. Since these triggers
cannot execute simultaneously, you must specify an order of
execution for them.

Since the following CREATE TRIGGER statement specifies an order
of 1, any subsequent BEFORE INSERT triggers that you define for
the table must have a unique order number greater than 1.

CREATE TRIGGER CheckCourseLimit
BEFORE INSERT
ON Enrolls
ORDER 1
328

SQL Triggers
You designate the order value with an unsigned integer, which must
be unique for that table, time, and event. If you anticipate inserting
new triggers within the current order, leave gaps in the numbering to
accommodate this.

If you do not designate an order for a trigger, then the trigger is
created with a unique order value that is higher than that of any
trigger currently defined for that table, time, and event.

Defining the
Trigger Action

The trigger action executes once for each row. The syntax for the
trigger action is as follows:

CREATE TRIGGER InsTrig
BEFORE INSERT ON Tuition
REFERENCING NEW AS Indata
FOR EACH ROW
INSERT INTO Tuitionidtable VALUES(Indata.ID);

If the triggered action contains a WHEN clause, then the triggered
SQL statement executes if the Boolean expression is true. If the
expression is not true, then the triggered SQL statement does not
execute. If no WHEN clause is present, then the triggered SQL
statement executes unconditionally.

The triggered SQL statement can be either a single SQL statement,
including a stored procedure call (CALL procedure_name), or a
compound statement (BEGIN...END).

Note The triggered action must not change the subject table of
the trigger.

When you need to reference a column of the old row image (in the
case of DELETE or UPDATE) or a column of the new row image (in
the case of INSERT or UPDATE) in the triggered action, you must
add a REFERENCING clause to the trigger declaration, as follows:

REFERENCING NEW AS N

The REFERENCING clause allows you to maintain information
about the data that the trigger modifies.
329

Storing Logic
330

c h a p t e r
18
Managing Data
This chapter includes the following sections:

Overview of Managing Data

Defining Relationships Among Tables

Keys

Referential Constraints

Referential Integrity in the Sample Database

Administering Database Security

Concurrency Controls

Atomicity in Pervasive PSQL Databases
331

Managing Data
Overview of Managing Data
This chapter discusses the following topics:

Defining relationships among tables

Administering database security

Controlling concurrency

Atomicity in SQL databases

In most cases, you can use SQL statements to perform these database
management tasks.

You can also enter the SQL statements using the SQL Data Manager.
For more information about using SQL Data Manager, refer to the
Pervasive PSQL User's Guide.
332

Defining Relationships Among Tables
Defining Relationships Among Tables
You can use referential integrity (RI) with Pervasive PSQL to define
how each table is related to other tables in the database. RI assures
that when a column (or group of columns) in one table refers to a
column (or group of columns) in another table, changes to those
columns are synchronized. RI provides a set of rules that define the
relationships between tables. These rules are known as referential
constraints. (Referential constraints are also informally referred to as
relationships.)

When you define referential constraints for tables in a database, the
transactional database engine enforces the constraints across all
applications that access those tables. This frees the applications from
checking table references independently each time an application
changes a table.

You must name your database in order to use RI. Once you have
defined referential constraints, each affected data file contains the
database name. When someone attempts to update a file, the
transactional database engine uses the database name to locate the
data dictionary containing the applicable RI definitions and checks
the update against those RI constraints. This prevents Pervasive
PSQL applications from compromising RI, since the transactional
database engine blocks updates that do not meet referential
constraints.

To define referential constraints on the tables in a database, use
CREATE TABLE and ALTER TABLE statements. Refer to the
following topics in SQL Engine Reference for the syntax of these
statements:

CREATE TABLE

ALTER TABLE

Referential
Integrity
Definitions

The following definitions are useful in understanding referential
integrity.

A parent table is a table that contains a primary key referenced by
a foreign key.

A parent row is a row in a parent table whose primary key value
matches a foreign key value.
333

Managing Data
A delete-connected table occurs if your deletion of rows in one
table causes the deletion of rows in a second table. The following
conditions determine whether tables are delete-connected:

A self-referencing table is delete-connected to itself.

Dependent tables are always delete-connected to their
parents, regardless of the delete rule.

A table is delete-connected to its grandparents when the
delete rules between the parent and grandparents is
CASCADE.

A dependent table is a table that contains one or more foreign
keys. Each of these foreign keys can reference a primary key in
either the same or a different table. A dependent table can
contain multiple foreign keys.

Every foreign key value in a dependent table must have a
matching primary key value in the associated parent table. In
other words, if a foreign key contains a particular value, the
primary key of one of the rows in the foreign key’s parent table
must also contain that value.

Attempting to insert a row into a dependent table fails if the
parent table for each referential constraint does not have a
matching primary key value for the foreign key value in the
dependent table row being inserted. Attempting to delete a row
in a parent table to which foreign keys currently refer either fails
or causes the dependent rows to be deleted as well, depending on
how you have defined the referential constraints.

A dependent row is a row in a dependent table; its foreign key
value depends on a matching primary key value in the associated
parent row.

An orphan row is a row in a dependent table that has a foreign
key value that does not exist in the index corresponding to the
parent table’s primary key. The dependent key value does not
have a corresponding parent key value.

A reference is a foreign key that refers to a primary key.

A reference path is a particular set of references between
dependent and parent tables.

A descendant is a dependent table on a reference path. It may be
one or more references removed from the path’s original parent
table.
334

Defining Relationships Among Tables
A self-referencing table is a table that is its own parent table; the
table contains a foreign key that references its primary key.

A cycle is a reference path in which the parent table is its own
descendant.
335

Managing Data
Keys
To use RI, you must define keys. There are two types of keys: primary
and foreign.

A primary key is a column or group of columns whose value uniquely
identifies each row in a table. Because the key value is always unique,
you can use it to detect and prevent duplicate rows.

A foreign key is a column or set of columns that is common to the
dependent and parent tables in a table relationship. The parent table
must have a matching column or set of columns that is defined as the
primary key. Foreign keys reference primary keys in a parent table. It
is this relationship of a column in one table to a column in another
table that provides the transactional database engine with its ability
to enforce referential constraints.

Primary Keys A good primary key has these characteristics:

It is mandatory; it must store non-null values.

It is unique. For example, the ID column in a Student or Faculty
table is a good key because it uniquely identifies each individual.
It is less practical to use a person’s name because more than one
person might have the same name. Also, databases do not detect
variations in names as duplicates (for example, Andy for Andrew
or Jen for Jennifer).

It is stable. The ID of a student is a good key not only because it
uniquely identifies each individual, but it is also unlikely to
change, while a person’s name might change.

It is short; it has few characters. Smaller columns occupy less
storage space, database searches are faster, and entries are less
prone to mistakes. For example, an ID column of 9 digits is easier
to access than a name column of 30 characters.

Creating Primary Keys
You create a referential constraint by creating a foreign key on a table.
However, before creating the foreign key, you must create a primary
key on the parent table to which the foreign key refers.

A table can have only one primary key. You can create a primary key
using either of the following:
336

Keys
A PRIMARY KEY clause in a CREATE TABLE statement.

An ADD PRIMARY KEY clause in an ALTER TABLE statement.

The following example creates the primary key ID on the Person
table in the sample database:

ALTER TABLE Person
ADD PRIMARY KEY (ID);

When creating a primary key, remember that Pervasive PSQL
implements the primary key on the table using a unique, non-null,
non-modifiable index. If one does not exist for the specified
columns, then Pervasive PSQL adds a non-named index with these
attributes containing the columns specified in the primary key
definition.

Dropping Primary Keys
You can delete a primary key only after you have dropped all foreign
keys that depend on it. To drop a primary key from a table, use a
DROP PRIMARY KEY clause in an ALTER TABLE statement. Since
a table can have only one primary key, you do not have to specify the
column name when you drop the primary key, as the following
example illustrates:

ALTER TABLE Person
DROP PRIMARY KEY;

Changing Primary Keys
To change a table’s primary key, follow these steps:

1 Drop the existing primary key using a DROP PRIMARY KEY
clause in an ALTER TABLE statement.

Note Doing so does not remove the column, or the index used
by the primary key; it only removes the primary key definition.
To remove the primary key, there must be no foreign key
referencing the primary key.

2 Create a new primary key using an ADD PRIMARY KEY clause
in an ALTER TABLE statement.
337

Managing Data
Foreign Keys A foreign key is a column or set of columns that is common to the
dependent and parent tables in a table relationship. The parent table
must have a matching column or set of columns that is defined as the
primary key. When you create a foreign key, you are creating a
referential constraint, or a data link, between a dependent table and
its parent table. This referential constraint can include rules for
deleting or updating dependent rows in the parent table.

The foreign key name is optional. If you do not specify a foreign key
name, Pervasive PSQL tries to create a foreign key using the name of
the first column in the foreign key definition. For more information
about naming conventions for foreign keys and other database
elements, refer to Naming Conventions.

Because Pervasive PSQL keywords are reserved words, you cannot
use them in naming database elements. For a list of the Pervasive
PSQL keywords, refer to the following topic in SQL Engine Reference:
SQL Reserved Words.

Creating Foreign Keys in Existing Tables
To create a foreign key in an existing table, follow these steps:

1 Ensure that a primary key exists in the parent table you are
referencing.

All columns in the primary and foreign key must be of the same
data type and length, and the set of columns must be in the same
order in both definitions.

2 Pervasive PSQL creates a non-null index for the column or
group of columns specified in the foreign key definition. If the
table definition already has such an index, Pervasive PSQL uses
that index; otherwise, Pervasive PSQL creates a non-named
index with the non-null, non-unique, and modifiable index
attributes.

3 Create the foreign key using an ADD CONSTRAINT clause in
an ALTER TABLE statement.

For example, the following statement creates a foreign key called
Faculty_Dept on the column Dept_Name in the Faculty table of
the sample database. The foreign key references the primary key
created in the Department table and specifies the delete restrict
rule.
338

Keys
ALTER TABLE Faculty
ADD CONSTRAINT Faculty_Dept FOREIGN KEY
(Dept_Name)
REFERENCES Department
ON DELETE RESTRICT;

Creating Foreign Keys When Creating a Table
To create a foreign key when creating the table, follow these steps:

1 Ensure that a primary key exists in the parent table you are
referencing.

All columns in the primary and foreign key must be of the same
data type and length, and the set of columns must be in the same
order in both definitions.

2 Pervasive PSQL creates a non-null index for the column or
group of columns specified in the foreign key definition. If the
table definition already has such an index, Pervasive PSQL uses
that index; otherwise, Pervasive PSQL creates a non-named
index with the non-null, non-unique, and modifiable index
attributes.

3 Create the table using a CREATE TABLE statement and include
a FOREIGN KEY clause.

For example, the following statement creates a foreign key called
Course_in_Dept on the column Dept_Name in a table called
Course.

CREATE TABLE Course
(Name CHAR(7) CASE,
Description CHAR(50) CASE,
Credit_Hours USMALLINT,
Dept_Name CHAR(20) CASE)#

ALTER TABLE Course
ADD CONSTRAINT Course_in_Dept

FOREIGN KEY (Dept_Name)
REFERENCES DEPARTMENT(Name)
ON DELETE RESTRICT

Dropping Foreign Keys
To delete a foreign key from a table, use a DROP CONSTRAINT
clause in an ALTER TABLE statement. You must specify the foreign
key name since a table can have more than one foreign key.
339

Managing Data
ALTER TABLE Course
DROP CONSTRAINT Course_in_Dept;
340

Referential Constraints
Referential Constraints
Databases on which you define referential constraints must meet the
following requirements:

The database must have a database name.

The database must reside on a single workstation drive or a
single mapped network drive.

The data files must be in 6.x or later transactional database
engine format.

For information about converting 5.x or later data files to 6.x or
7.x format, refer to the Advanced Operations Guide.

In order for a database to support referential integrity it must also
support the concept of foreign keys. A foreign key is a column or set
of columns in one table (called the dependent table) that is used to
reference a primary key in another table (called the parent table).
The RI rule requires all foreign keys’ values to reference valid
primary key values. For example, a student cannot enroll in a
nonexistent course.

You can use a CREATE TABLE or ALTER TABLE statement to define
keys on a table in a named database. The following sections explain
how to create and modify keys. These sections also provide examples
of referential constraints.

After you define referential constraints on a database, applications
that do not perform data updates according to referential rules may
fail. For example, if an application tries to insert a row into a
dependent table before inserting the corresponding parent row into
the parent table, the insertion fails. Refer to the section Referential
Integrity Rules for more information.

Note If a file has referential constraints defined, it is a bound
data file. If a user tries to access it with Btrieve, then the Btrieve
user can access the file, but can only perform actions within RI
constraints. For more information about bound data files, refer
to the section Understanding Database Rights.
341

Managing Data
Referential
Integrity Rules

Certain rules apply to inserting and updating rows in dependent
tables and updating and deleting rows in parent tables when you
define referential constraints on database tables. Pervasive PSQL
supports the restrict and cascade rules as follows:

Insert into dependent table — The parent table for each foreign
key definition must have a corresponding primary key value for
the foreign key value being inserted. If any parent table does not
have a corresponding value, then the Insert operation fails.

Update in the dependent table — The parent table for each
foreign key definition must have a corresponding primary key
value for the foreign key value (the new value for the foreign
key). If any parent table does not have a corresponding value,
then the Update operation fails.

Update in the parent table — This is not allowed. You cannot
update primary key values. To perform a similar operation,
delete the row you want to update, then insert the same row with
the new primary key value.

Delete in the parent table — You can specify either the cascade
or restrict rule for this operation. Cascade means that if a
dependent table contains a foreign key value that matches the
primary key value being deleted, then all rows containing that
matching value are deleted from the dependent table also.

Restrict means that if a dependent table contains a foreign key
value that matches the primary key value being deleted, then the
Delete operation on the parent table fails. The cascade operation
is recursive; if the dependent table has a primary key that is the
parent table of a cascade foreign key, then the process is repeated
for that set of data.

Insert Rule
The insert rule is a restrict rule. For each foreign key in the row being
inserted, the foreign key value must be equivalent to a primary key
value in the parent table. The parent table must contain a parent row
for the foreign key in the row you are inserting; otherwise, the
insertion fails. Pervasive PSQL causes the transactional database
engine to automatically enforce the insert rule on dependent tables.
342

Referential Constraints
Update Rule
The update rule is also a restrict rule. A foreign key value must be
updated to an equivalent primary key value in the parent table. If the
parent table does not contain a parent row for the foreign key value,
the update fails.

You can explicitly specify the update rule as restrict when you define
a foreign key on a table; however, Pervasive PSQL causes the
transactional database engine to enforce the rule by default if you do
not specify it.

Delete Rule
You can explicitly specify the delete rule as either restrict or cascade
when you define a foreign key. If you do not specify the delete rule
explicitly, Pervasive PSQL assumes a default of restrict for the delete
rule.

If you specify restrict as the delete rule, Pervasive PSQL causes
the transactional database engine to check each row you attempt
to delete from a parent table to see if that row is a parent row for
a foreign key in another table. If it is a parent row, Pervasive
PSQL returns a status code and does not delete the row. You
must first delete all corresponding rows in the referenced table or
tables before you can delete the parent row.

If you specify cascade as the delete rule, Pervasive PSQL causes
the transactional database engine to check each row you attempt
to delete from a parent table to see if that row is a parent row for
a foreign key in another table. The transactional database engine
then checks the delete rule for each descendant of that table. If
any descendant has restrict as the delete rule, the attempted
deletion fails. If all descendants have cascade as the delete rule,
Pervasive PSQL deletes all dependent rows on the reference path
to the original parent table.

The following guidelines govern the delete rule for foreign keys:

A cycle with two or more tables cannot be delete-connected to
itself. Consequently, the delete rule for at least two of the
dependent tables in the cycle must not be cascade.

The last delete rule in all paths from one table to another must
be the same.
343

Managing Data
If the delete rule for the foreign key is cascade, then the table
containing the foreign key may not have a delete trigger defined
on it.

If the table containing the foreign key has a delete trigger defined
on it, then the delete rule must be restrict.

Pervasive PSQL enforces these guidelines on databases that have
referential constraints defined. If you attempt to declare delete rules
that violate these guidelines, Pervasive PSQL returns a status code to
indicate an error occurred.

Pervasive PSQL enforces the delete rule guidelines to avoid certain
anomalies that might otherwise occur when you delete dependent
rows from tables. Following are examples of anomalies that might
occur without these guidelines.

Anomaly on Delete-Connected Cycles

A cycle with two or more tables cannot be delete-connected to itself.
Consequently, the delete rule for at least two of the dependent tables
in the cycle must be restrict.

Assume you want to execute the following statement.

DELETE FROM Faculty

Because of the relationships between the Faculty and Department
tables, deleting a row from Faculty first deletes a row from Faculty,
then from Department, where the cascaded delete stops because of
the restrict rule on the name of the department.

The results could be inconsistent, depending on the order in which
Pervasive PSQL deletes rows from the Faculty table. If it attempts to
delete the row in which the ID is 181831941, the delete operation
fails. The restrict rule on the Department name prevents Pervasive
PSQL from deleting the first row in the department table in which
the primary key value equals Mathematics, since the second row in
Faculty continues to reference this row’s primary key.

If instead, Pervasive PSQL deletes the Faculty rows in which the
primary keys equal 179321805 and 310082269 first (in either order),
all the rows in Faculty and Department are deleted.

Since the result of the example DELETE statement is consistent, no
rows are deleted.
344

Referential Constraints
Anomaly on Multiple Paths

Delete rules from multiple delete-connected paths must be the same.
Figure 2 shows an example of one anomaly that might occur without
this guideline. In the figure, the arrows point to the dependent tables.

Figure 2 Multiple Paths Anomaly

Faculty is delete-connected to Room through multiple delete-
connected paths with different delete rules. Assume you want to
execute the following statement.

DELETE FROM Room
WHERE Building_Name = 'Bhargava Building'
AND Number = 302;

The success of the operation depends on the order in which Pervasive
PSQL accesses Faculty and Department to enforce their delete rules.

If it accesses Faculty first, the delete operation fails because the
delete rule for the relationship between Room and Faculty is
restrict.

If it accesses Department first, the delete operation succeeds,
cascading to both Department and Faculty.

To avoid problems, Pervasive PSQL insures that the delete rules for
both paths that lead to Faculty are the same.

Room

Faculty Department

Restrict Cascade

Cascade
345

Managing Data
Referential Integrity in the Sample Database
This section demonstrates the table and referential constraint
definitions on the sample database.

Creating the
Course Table

The following statement creates the Course table.

CREATE TABLE Course
(Name CHAR(7) CASE,
Description CHAR(50) CASE,
Credit_Hours USMALLINT,
Dept_Name CHAR(20))

Adding a
Primary Key to
Course

The following statement adds a primary key (Name) to the Course
table.

ALTER TABLE Course
ADD PRIMARY KEY (Name);

Creating the
Student Table
with Referential
Constraints

The following statement creates the Student table and defines its
referential constraints.

CREATE TABLE Student
(ID UBIGINT,
PRIMARY KEY (ID),
Cumulative_GPA NUMERICSTS(5,3),
Tuition_ID INTEGER,
Transfer_Credits NUMERICSA(4,0),
Major CHAR(20) CASE,
Minor CHAR(20) CASE,
Scholarship_Amount DECIMAL(10,2),
Cumulative_Hours INTEGER)

CREATE UNIQUE INDEX Tuition_ID ON Student(ID)

ALTER TABLE Student ADD CONSTRAINT
S_Tuition
FOREIGN KEY (Tuition_ID)
REFERENCES Tuition
ON DELETE RESTRICT
346

Administering Database Security
Administering Database Security
The Pervasive PSQL security option allows you to protect your data
by limiting operations on some data columns to particular users.
These limits may range from allowing a user to see only certain
columns in a table, to allowing them to see all the columns in a table,
but not update them. Pervasive PSQL makes no assumptions about
database authorization based on the operating system’s file and
directory rights. By default, all users accessing a database through
Pervasive PSQL have complete read-write access to the data. You
must enable and define database security to limit this access and
protect the database from unauthorized update or access through
Pervasive PSQL.

Pervasive PSQL security statements allow you to perform the
following actions to limit access to your database:

Enable security for the database.

Identify users and groups of users and assign passwords to them.

Grant rights to users and user groups.

Revoke rights from users and user groups.

Disable security for the database.

Retrieve information about security defined for a database.

Understanding
Database
Rights

Table 47 shows the rights you can grant to users and user groups.

Table 47 Database Rights

Right Description

Login Allows a user to log in to a database. You assign this right when you create a user and a
password. The Login right does not give users access to data, however. You must assign
other rights to users before they can access data. You cannot assign the Login right to a user
group.

Create Table Enables a user to create new table definitions. The user automatically has full access rights
to the tables he or she creates at the time of creation, but the Master User can later revoke
read, write, and alter rights for the table. The Create Table right is also referred to as a global
right, because it applies to the entire data dictionary.

Select Allows a user to query tables for information. You can grant the Select right for specific
columns or for a whole table.
347

Managing Data
You can assign certain types of rights over the whole database or for
a particular database element. For example, when you assign the
Update right to a user or user group, you can limit it to certain tables
or to certain columns in tables. In contrast, when you assign the
Create Table right to a user or user group, that user or user group has
the Create Table right for the entire database. You cannot apply the
Create Table right to a single table or column.

While the Create Table and Login rights apply to the entire database,
all other rights apply to tables. In addition, you can apply Select and
Update rights to individual columns in tables.

Establishing
Database
Security

The following nine steps describe the general procedure for
establishing security for a database.

1 Log in to the database for which you want to establish security.

For more information about logging in to a database, refer to the
Pervasive PSQL User's Guide.

2 Enable security for the database by creating the master user and
specifying the master password with the SET SECURITY
statement.

Update Gives a user the right to update information in specified columns or tables. You can grant the
Update right for specific columns or for a whole table.

Insert Allows a user to add new rows to tables. You can grant the Insert right only at the table level.

Delete Allows a user to delete information from tables. You can grant the Delete right only at the table
level.

Alter Allows a user to change the definition of a table. You can grant the Alter right only at the table
level.

References Allows a user to create foreign key references that refer to a table. The References right is
necessary for defining referential constraints.

All Includes Select, Update, Insert, Delete, Alter, and References rights.

Table 47 Database Rights continued

Right Description
348

Administering Database Security
After you have enabled security as Master, the name of the
master user is Master (case-sensitive), the password you
specified when you enabled security becomes the master
password (also case-sensitive). For more information, refer to
Enabling Security.

3 Optional: Define a minimal set of rights for the PUBLIC group.

All users automatically belong to the PUBLIC group. For more
information, refer to Granting Rights to the PUBLIC Group.

4 Optional: Create user groups with the CREATE GROUP
statement.

You can create as many groups as you need for your system.
However, a user can belong to only one group other than
PUBLIC. For more information, refer to Creating User Groups.

5 Optional: Grant rights to each user group with the GRANT
CREATETAB and GRANT (access rights) statements. For more
information, refer to Granting Rights to User Groups.

6 Grant login privileges to users by specifying the users’ names and
passwords with the GRANT LOGIN statement, and if you
choose, assign each user to a user group. For more information,
refer to Creating Users.

7 Grant rights to the users you have created who are not members
of a user group using the GRANT CREATETAB and GRANT
(access rights) statements. For more information, refer to
Granting Rights to Users.

8 Optional: To protect your files from unauthorized Btrieve access,
make the database a bound database. For more information
about bound databases, refer to Understanding Database Rights.

Enabling
Security

You can use a SET SECURITY statement to enable security. In
response, Pervasive PSQL creates the master user, who has complete
read-write access to the database. The password you specify with a
SET SECURITY statement becomes the master password for the
database.

The following example enables security for a database and specifies
the password for the master user as Secure:

SET SECURITY = Secure;

Passwords are case-sensitive.
349

Managing Data
When you enable security, Pervasive PSQL creates the system tables
X$User and X$Rights. Enabling security excludes all users except the
master user from accessing the database until you explicitly create
other users and grant them login rights.

Creating User
Groups and
Users

After you enable security, your database has one user (Master) and
one user group (PUBLIC). To provide other users access to the
database, log in to the database as the master user and create users by
name and password. You can also organize the users in user groups.

User names are case-sensitive in Pervasive PSQL. Therefore, when
you log in as the master user, you must specify the user name as
Master.

Creating User Groups
To simplify security administration, you can organize users in user
groups. You can create as many user groups as you need for your
system. A user, however, can belong to only one group in addition to
PUBLIC. Once the user is in an additional group, the user inherits
the rights of that group, and you cannot grant individual rights to
that user. The rights of a user in a group cannot differ from the rights
defined for the entire group. To give a user unique rights, create a
special group just for that user.

To create a user group, use a CREATE GROUP statement.

CREATE GROUP Accounting;

You can also create multiple user groups at once.

CREATE GROUP Accounting, Registrar, Payroll;

User group names are case-sensitive, cannot exceed 30 characters,
and must be unique to the database. For more information about
rules for naming user groups, refer to the Btrieve API Guide.

Creating Users
When you create a user for a database, Pervasive PSQL enters the
corresponding user name and password into the database’s security
tables. To create a user, use a GRANT LOGIN TO statement. The
following example creates the user Cathy and assigns Passwd as her
password.

GRANT LOGIN TO Cathy:Passwd;
350

Administering Database Security
Note Pervasive PSQL stores passwords in encrypted form.
Therefore, you cannot query the X$User table to view user
passwords.

You can also assign a user to a user group when you create the user.
For example, to assign the user Cathy to the Accounting group, use
the following statement:

GRANT LOGIN TO Cathy : Passwd
IN GROUP Accounting;

User names and passwords are case-sensitive. See Identifier
Restrictions by Identifier Type in Advanced Operations Guide for
permissible lengths and characters pertaining to user names and
passwords.

Granting Rights This section explains how to grant rights to user groups and
individual users.

Granting Rights to the PUBLIC Group
All users automatically belong to the PUBLIC group, a special user
group used to define the minimum set of rights for all users of a
particular database. No user can have fewer rights than those
assigned to the PUBLIC group. You cannot drop a user from the
PUBLIC group, and you cannot revoke rights from a user if those
rights are granted to the PUBLIC group.

By default, the PUBLIC group has no rights. To change the rights of
the PUBLIC group, use a GRANT (access rights) statement. For
example, the following statement allows all users of the sample
database to query the Department, Course, and Class tables in the
database:

GRANT SELECT ON Department, Course, Class
TO PUBLIC;

After granting rights to the PUBLIC group, you can create other
groups to define higher levels of access. You can also give individual
users additional rights that differ from any other user or group,
provided the user is not part of a group.
351

Managing Data
Granting Rights to User Groups
You can assign rights to a user group and add user names and
passwords to the group. Doing so eliminates assigning each user’s
rights individually. Also, security is easier to maintain if you assign
security rights to groups, since you can change the rights of many
users by granting new rights or revoking existing rights for an entire
group at once.

To grant rights to a user group, use a GRANT (access rights)
statement. For example, the following statement allows all users in
the Accounting group to alter the Billing table definition in the
sample database.

GRANT ALTER ON Billing TO Accounting;

Note Remember that granting the Alter right implicitly grants
the rights Select, Update, Insert, and Delete.

Granting Rights to Users
After you create a user, that user can log in to the database. However,
the user cannot access data until you either place the user in a user
group with rights or grant rights to the user.

To grant rights to a user, use a GRANT (access rights) statement. The
following example allows the user John to insert rows into the billing
table in the sample database.

GRANT INSERT ON Billing
TO John;

Note Granting the Insert right implicitly grants the rights Select,
Update, and Delete.

Dropping Users
and User
Groups

To drop (delete) a user, use a REVOKE LOGIN statement.

REVOKE LOGIN FROM Bill;

This statement removes the user Bill from the data dictionary. After
you drop a user, the user cannot access any tables in the database
unless you disable security for the database.

You can also drop multiple users at once, as in the following example.
352

Administering Database Security
REVOKE LOGIN FROM Bill, Cathy, Susan;

To drop a user group, follow these steps:

1 Drop all users from the group, as in the following example:

REVOKE LOGIN FROM Cathy, John, Susan;

2 Use a DROP GROUP statement to drop the group. The
following example drops the Accounting group:

DROP GROUP Accounting;

Revoking
Rights

To revoke a user’s rights, use the REVOKE statement. The following
example revokes the user Ron’s Select rights from the Billing table of
the sample database.

REVOKE SELECT
ON Billing
FROM Ron;

Disabling
Security

To disable security for a database, follow these steps:

1 Log in to the database as the master user.

2 Issue a SET SECURITY statement, specifying the NULL
keyword, as follows:

SET SECURITY = NULL;

When you disable security for a database, Pervasive PSQL removes
the X$User and X$Rights system tables from the database and deletes
the associated .DDF files.

Note You cannot disable security simply by deleting the
USER.DDF and RIGHTS.DDF data dictionary files. If you delete
these and try to access the database, Pervasive PSQL returns an
error and denies access to the database.

Retrieving
Information
about Database
Security

When you set up database security, Pervasive PSQL creates the
system tables X$User and X$Rights. Because the system tables are
part of the database, you can query them if you have the appropriate
rights.

For a complete reference to the contents of each system table, refer to
the following topic in SQL Engine Reference: System Tables.
353

Managing Data
Concurrency Controls
The transactional database engine and its automatic recovery
functions handle the physical integrity of your database. Pervasive
PSQL provides logical data integrity using the transaction and
record-locking capabilities of the transactional database engine.
Pervasive PSQL, in conjunction with the transactional database
engine, provides the following types of concurrency controls:

Isolation levels for transactions

Explicit locks

Passive control

Transaction
Processing

Transaction processing lets you identify a set of logically related
database modifications, either within a single table or across
multiple tables, and require them to be completed as a unit.
Transaction processing involves two important concepts:

A logical unit of work, or transaction, is a set of discrete
operations that must be treated as a single operation to ensure
database integrity. If you make a mistake or encounter a problem
during a transaction, you can issue a ROLLBACK WORK
statement to undo the changes you have already made.

For example, the Registrar might credit a student account with
an amount paid in one operation, then update the amount owed
in a second operation. By grouping these operations together
you ensure the student’s finances are accurate.

A locking unit is the amount of data from which other tasks are
blocked until your transaction is complete. (A task is a Pervasive
PSQL session.) Locking prevents other tasks from changing the
data you are trying to change. If other tasks can also change the
data, Pervasive PSQL cannot roll back work to a previously
consistent state. Thus, within a transaction, only one task may
access a given locking unit at a time. However, multiple cursors
that belong to the same task can access the locking unit at the
same time.

The START TRANSACTION statement begins a transaction. When
you have issued all the statements you want to complete during the
transaction, issue a COMMIT WORK statement to end the
354

Concurrency Controls
transaction. The COMMIT WORK statement saves all your changes,
making them permanent.

Note START TRANSACTION and COMMIT WORK are only
supported in stored procedures. For more information on these
two SQL statements, see SQL Engine Reference.

If an error occurs in one of the operations, you can roll back the
transaction and then retry it again after correcting the error. For
example, if you need to make related updates to several tables, but
one of the updates is unsuccessful, you can roll back the updates you
have already made so the data is not inconsistent.

Pervasive PSQL automatically performs the rollback operation if two
tasks are sharing a login session and the task that originated the
session logs out before the second task completes its transition.

Starting and
Ending
Transactions

To begin a transaction, issue a START TRANSACTION statement in
a stored procedure. After issuing all the statements you want to
complete during the transaction, issue a COMMIT WORK
statement to save all your changes and end the transaction.

START TRANSACTION;
UPDATE Billing B

SET Amount_Owed = Amount_Owed - Amount_Paid
WHERE Student_ID IN
(SELECT DISTINCT E.Student_ID
FROM Enrolls E, Billing B

WHERE E.Student_ID = B.Student_ID);
COMMIT WORK;

For more information about the START TRANSACTION statement,
refer to SQL Engine Reference.

Using
Savepoints to
Nest
Transactions

In a SQL transaction, you can define additional markers called
savepoints. Using savepoints, you can undo changes after a savepoint
in a transaction and continue with additional changes before
requesting the final commit or abort of the entire transaction.

To begin a transaction, use the START TRANSACTION statement.
The transaction remains active until you issue a ROLLBACK or
COMMIT WORK statement.

To establish a savepoint, use the SAVEPOINT statement.
355

Managing Data
SAVEPOINT SP1;

To rollback to a savepoint, use the ROLLBACK TO SAVEPOINT
statement.

ROLLBACK TO SAVEPOINT SP1;

The savepoint name must specify a currently active savepoint in the
current SQL transaction. Any changes made after establishing this
savepoint are cancelled.

To delete a savepoint, use the RELEASE SAVEPOINT statement.

RELEASE SAVEPOINT SP1;

You can only use this statement if a SQL transaction is active.

If you issue a COMMIT WORK statement, all savepoints defined by
the current SQL transaction are destroyed, and your transaction is
committed.

Note Do not confuse ROLLBACK TO SAVEPOINT with
ROLLBACK WORK. The former cancels work only to the
indicated savepoint, while the latter cancels the entire outermost
transaction and all savepoints established within it.

Savepoints provide a way to nest your transactions, thereby allowing
the application to preserve the previous work in the transaction
while it waits for a sequence of statements to complete successfully.
As an example, you can use a WHILE loop for this purpose. You can
set a savepoint before beginning a sequence of statements that may
fail on the first attempt. Before your transaction can proceed, this
sub-transaction must complete successfully. If it fails, the sub-
transaction rolls back to the savepoint, where it can start again.
When the sub-transaction succeeds, the rest of the transaction can
continue.

A SQL transaction must be active when you issue a SAVEPOINT
statement.

Note The MicroKernel allows each transaction a total of 255
internal nesting levels. However, Pervasive PSQL uses some of
these levels internally to enforce atomicity on INSERT, UPDATE,
and DELETE statements. Therefore, a session can effectively
define no more than 253 savepoints to be active at one time. This
356

Concurrency Controls
limit may be further reduced by triggers that contain additional
INSERT, UPDATE, or DELETE statements. If your operation
reaches this limit, you must reduce the number of savepoints or
the number of atomic statements contained within it.

Work that is rolled back within a savepoint cannot be committed
even if the outer transaction(s) completes successfully. However,
work that is completed within a savepoint must be committed by the
outermost transaction before it is physically committed to the
database.

For example, in the sample database you might start a transaction to
register a student for several classes. You may successfully enroll the
student in the first two classes, but this may fail on the third class
because it is full or it conflicts with another class for which the
student has enrolled. Even though you failed to enroll the student in
this class, you don’t want to undo the student’s enrollment for the
previous two classes.

The following stored procedure enrolls a student into a class by first
establishing a savepoint, SP1, then inserting a record into the Enrolls
table. It then determines the current enrollment for the class and
compares this to the maximum size for the class. If the comparison
fails, it rolls back to SP1; if it succeeds, it releases savepoint SP1.

CREATE PROCEDURE Enroll_student(IN :student ubigint, IN
:classnum integer);

BEGIN
DECLARE :CurrentEnrollment INTEGER;
DECLARE :MaxEnrollment INTEGER;
SAVEPOINT SP1;
INSERT INTO Enrolls VALUES (:student, :classnum, 0.0);
SELECT COUNT(*) INTO :CurrentEnrollment FROM Enrolls

WHERE class_id = :classnum;
SELECT Max_size INTO :MaxEnrollment FROM Class WHERE

ID = :classnum;
IF :CurrentEnrollment >= :MaxEnrollment
THEN
ROLLBACK to SAVEPOINT SP1;
ELSE
RELEASE SAVEPOINT SP1;
END IF;

END;
357

Managing Data
Note When working at the SQL level, transactions are controlled
in different ways depending on the interface. For ODBC,
transactions are controlled through the use of
SQL_AUTOCOMMIT option of the SQLSetConnectOption API,
in conjunction with the SQLTransact API.

For more information about the syntax of any of these statements,
refer to the entries for these statements in the SQL Engine Reference.

Special
Considerations

Transactions do not affect the following operations:

Operations that create or change dictionary definitions.
Therefore, you cannot roll back the results of the following
statements: ALTER TABLE, CREATE GROUP, CREATE INDEX,
CREATE PROCEDURE, CREATE TABLE, CREATE TRIGGER,
and CREATE VIEW.

Operations that remove dictionary definitions. Therefore, you
cannot roll back the results of the following statements: DROP
DICTIONARY, DROP GROUP, DROP INDEX, DROP
PROCEDURE, DROP TABLE, DROP TRIGGER, and DROP
VIEW.

Operations that grant or revoke security rights. Therefore, you
cannot roll back the results of the following statements: CREATE
GROUP, DROP GROUP, GRANT (access rights), GRANT
CREATETAB, GRANT LOGIN, REVOKE (access rights),
REVOKE CREATETAB, and REVOKE LOGIN.

If you attempt any of these operations within a transaction and
Pervasive PSQL completes the statement, then you cannot roll back
the results.

You cannot alter or drop a table (in other words, change its
dictionary definition) during a transaction if you have previously
referred to that table during the transaction. For example, if you start
a transaction, insert a record into the Student table, and then try to
alter the Student table, the ALTER statement fails. You must commit
the work from this transaction, and then alter the table.

Isolation Levels An isolation level determines the scope of a transaction locking unit
by allowing you to define the extent to which a transaction is isolated
from other users, who may also be in a transaction. When you use
358

Concurrency Controls
isolation levels, Pervasive PSQL automatically locks pages or tables
according to the isolation level you specify. These automatic locks,
which Pervasive PSQL controls internally, are called implicit locks, or
transaction locks. Locks that an application specifies explicitly are
called explicit locks, formerly record locks. For more information,
refer to Explicit Locks.

Pervasive PSQL offers two isolation levels for your transactions :

Exclusive (locks the entire data file you are accessing).
Corresponds to the ODBC isolation level
SQL_TXN_SERIALIZABLE

Cursor stability (locks either the row or page you are accessing).
Corresponds to the ODBC isolation level
SQL_TXN_READ_COMMITTED

You set the isolation level using the ODBC API
SQLSetConnectOption.

Exclusive Isolation Level (SQL_TXN_SERIALIZABLE)
When you use the exclusive isolation level, the locking unit is an
entire data file. Once you access a file or files within an exclusive
transaction, those files are locked from any similar access by any
other user in a transaction. This type of locking is most effective
when few applications attempt to access the same tables at the same
time, or when large parts of the file must be locked in the course of a
transaction.

Pervasive PSQL releases the lock on the file or files when you end the
transaction. When you access a table during an exclusive transaction,
the following conditions take effect:

Other tasks that are in a transaction cannot read, update, delete,
or insert rows in that table until you end the transaction.

Other tasks that are not in a transaction can read rows in the
table, but they cannot update, delete, or insert rows.

Multiple cursors within the same task can read any row in the
table. However, when you perform an update, delete, or insert
operation with a particular cursor, Pervasive PSQL locks the
entire data file for that cursor.

When you access tables through a joined view using the exclusive
isolation level, Pervasive PSQL locks all the accessed data files in the
view.
359

Managing Data
Cursor Stability Isolation Level
(SQL_TXN_READ_COMMITTED)
The transactional database engine maintains data files as a set of data
pages and index pages. When you use the cursor stability isolation
level, the locking unit is a data page or index page instead of a data
file. When you read records within a cursor stability transaction,
Pervasive PSQL locks the data pages that contain those records for
possible update, but allows concurrent access to a table by multiple
tasks within transactions. These read locks are released only when
you read another set of records. Pervasive PSQL supports set level
cursor stability since it allows an application to fetch multiple
records at a time.

In addition, any data modifications you make to the data or index
pages cause those records to remain locked for the duration of the
transaction, even if you issue subsequent reads. Other users in a
transaction cannot access these locked records until you commit or
roll back your work. However, other applications can lock other
pages from the same files within their own transactions.

When you access a file during a cursor stability transaction, Pervasive
PSQL locks data and index pages as follows:

You read a row, but you do not update it or delete it. Pervasive
PSQL locks the data page for that row until your next read
operation or until you end the transaction.

You update a non-index column in a row, delete a row from a
table that does not contain indexes, or insert a new row into a
table that does not contain indexes. Pervasive PSQL locks the
data page for that row for the remainder of the transaction,
regardless of subsequent read operations.

You update an indexed column in a row, delete a row from a table
that contains indexes, or insert a new row into a table that
contains indexes. Pervasive PSQL locks the affected index
page(s), as well as the data page, for the remainder of the
transaction, regardless of subsequent read operations.

Cursor stability ensures that the data you read remains stable, while
still allowing other users access to other data pages within the same
data files. Within the cursor stability isolation level, you can
generally achieve greater concurrency for all tasks by limiting the
number of rows you read at one time, thereby locking fewer data
360

Concurrency Controls
pages at a time. This allows other network users access to more pages
of the data file, since you do not have them locked.

However, if your application is scanning or updating large numbers
of rows, you increase the possibility of completely locking other users
out of the affected tables. Therefore, it is best to use cursor stability
for reading, writing, and committing small transactions.

Cursor stability does not lock records within a subquery. Cursor
stability does not guarantee that the conditions under which a row is
returned do not change, only that the actual row returned does not
change.

Transactions and Isolation Levels
Whenever you access data within a transaction, Pervasive PSQL
locks the accessed pages or files for that application. No other
application can write to the locked data pages or files until the locks
are released.

Using the cursor stability isolation level, when you access tables
through a joined view, Pervasive PSQL locks all the accessed pages
for all the tables in the view. Using the exclusive isolation level, when
you access tables through a joined view, Pervasive PSQL locks all the
accessed tables in the view.

Pervasive PSQL performs no-wait transactions. If you try to access a
record that another task has locked within a transaction, Pervasive
PSQL informs you that the page or table is locked or that a deadlock
has been detected. In either case, roll back your transaction and
begin again. Pervasive PSQL allows multiple cursors in the same
application to access the same data file.

The following steps illustrate how two applications interact while
accessing the same tables within a transaction. The steps are
numbered to indicate the order in which they occur.

Task 1 Task 2

1. Activate the view.

2. Activate the view.

3. Begin a transaction.

4. Begin a transaction.
361

Managing Data
Since a transaction temporarily locks records, pages, or tables against
other applications’ updates, an application should not pause for
operator input during a transaction. This is because no other
application can update the records, pages, or tables accessed in the
transaction until the operator responds and the transaction is
terminated.

Note Reading records within a cursor stability transaction does
not guarantee that a subsequent update succeeds without
conflict. This is because another application may have already
locked the index page that Pervasive PSQL needs to complete the
update.

Avoiding Deadlock Conditions
A deadlock condition occurs when two applications are retrying
operations on tables, data pages, index pages, or records that the
other one has already locked. To minimize the occurrence of
deadlock situations, have your application commit its transactions
frequently. Do not attempt to retry the operation from your
application; Pervasive PSQL attempts a reasonable number of retries
before returning an error.

5. Fetch records.

6. Attempt to fetch records from the same data files.

7. Receive Status Code 84 (Record or Page Locked)
if both tasks are using cursor stability and Task 2
attempts to fetch the same records that Task 1 has
already locked, or receive 85 (File Locked) if one of
the tasks is using an exclusive transaction.

8. Retry the fetch if needed.

9. Update the records.

10. End the transaction.

11. The fetch is successful.

12. Update the records.

13. End the transaction.
362

Concurrency Controls
Deadlock Conditions under Exclusive Isolation Level

When you use the exclusive isolation level, Pervasive PSQL locks the
entire data file against updates by other applications; thus, it is
possible for a deadlock to occur if your applications do not access
data files in the same order, as shown in the following table.

Deadlock Conditions under Cursor Stability Isolation Level

When you use the cursor stability isolation level, other applications
can read and update records or pages in the file you are accessing
(records or pages that your application has not locked).

Explicit Locks When you wish to have concurrency control outside of transactions,
you can use explicit locks with the use of a Pervasive PSQL ODBC
driver extension to the SQLSetStmtOption API.

These locks are called explicit locks because the task is responsible for
setting the locks. Explicit locks do not allow you to roll back the
operations as do transactions.

The following table contains information on the ODBC driver
extension that allows you to perform an exclusive lock:

Task 1 Task 2

1. Begin a transaction.

2. Begin a transaction.

3. Fetch from File 1.

4. Fetch from File 2.

5. Fetch from File 2.

6. Receive lock status.

7. Retry Step 5.

8. Fetch from File 1.

9. Receive lock status.

10. Retry Step 8.
363

Managing Data
For more information regarding this ODBC driver extension, see
SQL Engine Reference.

Passive Control If your application performs single record fetch and update
sequences that are not logically connected, you can use Pervasive
PSQL’s passive method of concurrency. Using this method, you can
fetch and update (or delete) records without performing
transactions or record locks. These operations are referred to as
optimistic updates and deletes.

By default, if your task does not use transactions or explicit record
locks to complete update and delete operations, your task cannot
overwrite another task’s changes. The feature that ensures this data
integrity is passive control, sometimes referred to as optimistic
concurrency control. With passive control, your task does not
perform any type of locking. If another task modifies a record after
you originally fetched it, you must fetch the record again before you
can perform an update or delete operation.

Under passive control, if another application updates or deletes a
record between the time you fetch it and the time you issue an update

fOption vParam Description

1153 0 (default) turns off table
locking;

1 turns on table locking.

A Pervasive ODBC
Engine Interface
extension: When vParam
is set to 1, all tables used
by the hStmt are
exclusively locked when
a select, update, insert,
delete, or create index
statement is executed on
the hStmt.

The tables remain locked
until the hStmt is dropped
(by calling SQLFreeStmt
with the SQL_DROP
option) or vParam is set
to 0 and the hStmt is re-
executed. Locked tables
can only be used by the
locking hStmt; they
cannot be used by any
other hStmts.
364

Concurrency Controls
or remove operation, your application receives a conflict status. This
indicates that another application has modified the data since you
originally fetched it. When you receive a conflict status, you must
fetch the record again before you can perform the update or remove
operation.

Passive control allows an application that was designed for a single-
user system to run on a network without implementing lock calls.
However, passive control is effective only when an application is
operating in a lightly used network environment or on files in which
the data is fairly static. In a heavily used environment or on files that
contain volatile data, passive control may be ineffective.
365

Managing Data
Atomicity in Pervasive PSQL Databases
The principle of atomicity states that if a given statement does not
execute to completion, then it should not leave partial or ambiguous
effects in the database. For example, if a statement fails after it has
inserted three out of five records but does not undo that insert, then
the database is not in a consistent state when you retry the operation.
If the statement is atomic and it fails to complete execution, then all
changes are rolled back, so that the database is in a consistent state.
In this example, if all five records are not successfully inserted, then
none of them are inserted.

The atomicity rule is especially significant for statements that modify
multiple records or tables. It also makes retrying failed operations
simpler, because any previous attempt is guaranteed not to have left
any partial effects.

Pervasive PSQL enforces atomicity in two ways:

1 Any UPDATE, INSERT, or DELETE statement is defined to be
atomic. Pervasive PSQL guarantees that, if a multi-record and/or
multi-table modification operation fails, none of the effects of
that modification remain in the database.

This is true for Update, Insert, or Delete operations whether or
not they are performed inside or outside of procedures.

2 You may specify stored procedures as ATOMIC when you create
them. Such procedures apply the rule of atomicity to their entire
execution. Therefore, not only do UPDATE, INSERT, or
DELETE statements within an ATOMIC procedure execute
atomically, but if any other statements within that procedure fail,
all effects of the procedure’s execution thus far are rolled back.

Transaction
Control in
Procedures

Because triggers are always initiated by an external data change
statement (INSERT, DELETE, or UPDATE), and all data change
statements are defined to be atomic, the following statement are not
allowed in triggers or in any procedures invoked by triggers:

START TRANSACTION

COMMIT WORK

ROLLBACK WORK (including RELEASE SAVEPOINT and
ROLLBACK TO SAVEPOINT)
366

Atomicity in Pervasive PSQL Databases
In other words, triggers follow the same rules as ATOMIC
compound statements.

No user-initiated COMMIT WORK, ROLLBACK WORK, RELEASE
SAVEPOINT, or ROLLBACK TO SAVEPOINT statement can cause
a system-begun transaction (for purposes of atomicity) to end.
367

Managing Data
368

A p p e n d i x
A
Sample Collations Using
International Sorting Rules
This appendix provides sample collations of language-specific
strings, using the ISR tables provided in Btrieve.

This appendix shows sample collations in the following languages:

German Sample Collations

Spanish Sample Collations

French Sample Collations
369

Sample Collations Using International Sorting Rules
German Sample Collations
This section provides a sample of unsorted and sorted strings that
use the German character set:

Unsorted Data

Sorted Data

Unsorted Data

Datei abzüglich Abriß Äffin

Ähre Rubin aufwärmen Jacke

ächten Bafög Behörde berüchtigt

bescheißen zugereiste Beschluß Blitzgerät

Bürger Abgänger Dämlich darüber

daß Aufwasch absägen Defekt

dösen drängeln drüber dürr

Efeu Effekt einfädeln einschlägig

dunkel englisch Ente einsetzen

Engländer entführen Bergführer Haselnuß

Füllen für Zöllner fußen

hätte gefährden gefangen Gegenüber

gesinnt Härte Haß Fußgänger

häßlich hatte Gewäschshaus Kahl

Höhe Jaguar jäh Jähzorn

Jux Käfer Kaff Käfig

Kreisförmig Kreißsaal Lüftchen Jahr

luxuriös Pflügen pfütze einhüllen

Reißbrett Reißer Prügel Zögern

Abgang Raub Regreß Zobel
370

German Sample Collations
Säge Führer Führung regulär

schnüffler Rübe Zoll Rübli

säen Rätsel Salz Schnörkel

Abschluß strategisch Gespann dünkel

Gewähr Zone entblößen Zugegen

Däne Straßenkreuzung Zügel
371

Sample Collations Using International Sorting Rules
Sorted Data

Abgang drängeln Gewähr regulär

Abgänger drüber Härte Reißbrett

Abriß dunkel Haselnuß Reißer

absägen Dünkel Haß Rübe

Abschluß dürr häßlich Rubin

abzüglich Efeu hatte Rübli

ächten Effekt hätte säen

Äffin einfädeln Höhe Säge

Ähre einhüllen Jacke Salz

aufwärmen einschlägig Jaguar Schnörkel

Aufwasch einsetzen jäh schnüffler

Bafög Engländer Jahr Straßenkreuzung

Behörde englisch Jähzorn strategisch

Bergführer entblößen Jux Zobel

berüchtigt Ente Käfer Zögern

bescheißen entführen Kaff Zoll

Beschluß Führer Käfig Zöllner

Blitzgerät Führung Kahl Zone

Bürger Füllen Kreisförming zugegen

Dämlich für Kreißsaal Zügel

Däne fußen Lüftchen Zugereiste

darüber Fußgänger luxuriös

daß gefährden pflügen

Datei gefangen Pfütze

Defekt Gegenüber Prügel

dösen gesinnt Rätsel
372

Spanish Sample Collations
Spanish Sample Collations
This section provides a sample of sorted and unsorted strings that
use the Spanish character set:

Unsorted Data

Sorted Data

Unsorted Data

acción añal añoso baja

abdomen bético betún Borgoña

búsqueda acá zarigüeya cañada

abdicación cáñamo caos cartón

cigüeña clarión cónsul cúpola

chaqué chófer descortés desparej

desparapajo desteñir educación elaboración

émbolo epítome hórreo época

estúpido Eucaristía flúido horrendo

barbárico garañón garguero gruñido

hélice heróina gárgara garanon

herionómano fréir helio horrible

iglú ígneo intentar interés

ínterin accompañanta interior jícara

jinete judicial lactar’ lácteo

lúpulo lustar llana llegada

llorar judío máquina maraña

living maravilla lívído marqués

llama manómetro marquesina fábula

mí miasma obstáculo obstante
373

Sample Collations Using International Sorting Rules
Sorted Data

opiata ordeñar ordinal pabellón

pábilo penumbera peña peor

perímetro período rábano réplica

república señorita rabia xilófono

periódico sórdido peón tea

xilografia tiña tío típico

zoo ópera tipo tirón

té sordina repleto según

segunda tísico manoseado titán

señoría títere bebé

abdicación caos época hórreo

abdomen cartón estúpido horrible

acá cigüeña Eucaristía iglú

acción clarión fábula ígneo

accompañanta cónsul flúido intentar

añal cúpola fréir interés

añoso chaqué garanon ínterin

baja chófer garañón interior

barbárico descortés gárgara jícara

bebé desparej garguero jinete

bético desparapajo gruñido judicial

betún desteñir hélice judío

Borgoña educación helio lactar’

búsqueda elaboración heróina lácteo

cañada émbolo herionómano lívído
374

Spanish Sample Collations
cáñamo epítome horrendo living

lúpulo pábilo tío llegada

lustar penumbera típico llorar

llama peña tipo manómetro

llana peón tirón manoseado

máquina rábano xilografia

maraña rabia zarigüeya

maravilla repleto zoo

marqués réplica

marquesina república

mí según

miasma segunda

obstáculo señoría

obstante señorita

ópera sórdido

opiata sordina

ordeñar té

ordinal tea

pabellón tiña

peor tísico

perímetro titán

periódico títere

período xilófono
375

Sample Collations Using International Sorting Rules
French Sample Collations
This section provides a sample of sorted and unsorted strings that
use the French character set:

Unsorted Data

Sorted Data

Unsorted Data

ou lésé péché 999

OÙ haïe coop caennais

lèse dû côlon bohème

gêné lamé pêche LÈS

cæsium resumé Bohémien pêcher

les CÔTÉ résumé Ålborg

cañon du Haie pécher

cote colon l’âme resume

élève Canon lame Bohême

0000 relève gène casanier

élevé COTÉ relevé Grossist

Copenhagen côte McArthur Aalborg

Größe cølibat PÉCHÉ COOP

gêne révélé révèle Noël

île aïeul nôtre notre

août @@@@@ CÔTE COTE

côté coté aide air

modelé MODÈLE maçon MÂCON

pèche pêché pechère péchère
376

French Sample Collations
Sorted Data

@@@@@ coop Haie OÙ

0000 COOP haïe pèche

999 Copenhagen île pêche

Aalborg cote lame péché

aide COTE l’âme PÉCHÉ

aïeul côte lamé pêché

air CÔTE les pécher

Ålborg coté LÈS pêcher

août COTÉ lèse pechère

bohème côté lésé péchère

Bohême CÔTÉ MÂCON relève

Bohémien du maçon relevé

caennais dû McArthur resume

cæsium élève MODÈLE resumé

Canon élevé modelé résumé

cañon gène Noël révèle

Casanier gêne NOËL révélé

cølibat gêné notre

colon Größe nôtre

côlon Grossist ou
377

Sample Collations Using International Sorting Rules
378

A p p e n d i x
B
Sample Database Tables and
Referential Integrity
This appendix includes the following sections:

Overview of the Demodata Sample Database

Structure of the Demodata Sample Database

Referential Integrity in the Demodata Sample Database

Table Design of the Demodata Sample Database
379

Sample Database Tables and Referential Integrity
Overview of the Demodata Sample Database
The Pervasive sample database, DEMODATA, is provided as part of
the Pervasive PSQL product and is frequently used in the
documentation to illustrate database concepts and techniques. Even
if you are already familiar with Pervasive Software’s products, you
may want to review the information in this appendix in order to
become acquainted with the new sample database.

Even though you may not be working in an academic environment,
you can use the sample database examples both as a template and a
reference to help you design and develop your own customized
information systems. You can use the sample queries and other
aspects included in our example, since it reflects a real-life scenario.
380

Structure of the Demodata Sample Database
Structure of the Demodata Sample Database
The physical structure of the database consists of the elements of a
relational database: tables, columns, rows, keys, and indexes.

The database contains 10 tables with various relationships between
them. It contains data on students, faculty, classes, registration, and
so forth.

Assumptions Following are some assumptions around which the database was
built:

The scope of the database is one semester.

A student cannot take the same course more than once. For
example, a student cannot enroll in Algebra I, Sections 1 and 2.

A faculty member can be a student, but a faculty member cannot
teach and enroll in the same class.

Any course is offered by only one department.

In order for a student to receive a grade, they must be enrolled in
a class, and a faculty member must be assigned to teach the class.

Faculty members belong to a single department, but they can
teach for many departments.

All students have a Student ID that is based on the US standard
of a social security number.

All faculty members have a Faculty ID that is based on the US
standard of a social security number.

All other persons have a Person ID that is based on the US
standard of a social security number.

Rooms are unique within the same building.

Two classes cannot be taught in the same room at the same time.

A faculty member can only be teaching one class at a given time.

Prerequisites are not required for enrollment in a class.

Departments imply majors.

A course can only be taught by one faculty member throughout
the semester.

A telephone number or zip code does not correlate to a state.

A registrar cannot be a faculty member or student.
381

Sample Database Tables and Referential Integrity
When a person is entered into the database, they can complete a
survey of which they must answer all the questions or none of
the questions.

Credit hours for a course are not necessarily equal to the number
of hours that a class convenes.

An e-mail address does not have to be unique.

Entity
Relationships

Entities are objects that describe primary components in the
database. When designing a database, it is important to define the
entities and their relationships to one another before proceeding
further. In the university database, CLASSES, STUDENTS,
FACULTY, GRADES, and so forth, are entities. The entities and their
relationships to one another are outlined in Figure 3.

Figure 3 Entity Relationships

GRADES is a weak entity. It is dependent upon a student taking a
class, so its existence is dependent upon the validity of other entities.
The STUDENT and FACULTY tables create common information,
since a student could be a faculty member and vice versa. The
common information is in the PERSON table.

PERSON FACULTY

GRADE

DEPARTMENT

 has
an office

BILLING

TUITION

STUDENT

CLASS

COURSE

ROOM

 has
many registrars
 from

is a

is a

enrolls for

 pays
fees to

has a

teaches

 has
sections for

is taught in

offers

majors in

minors in

is head of

belongs to

 has
an office

LEGEND
many to many

one to many

one to one

ENTITY WEAK
ENTITY

relationship

This diagram does not show any attributes.
382

Referential Integrity in the Demodata Sample Database
Referential Integrity in the Demodata Sample Database
This section describes the referential integrity (RI) design in the
university sample database.

Figure 4 depicts the referential constraints that exist among the
various tables in the university database. The boxes represent tables.
The unidirectional-directional arrow implies a referential constraint
from the parent table to the referencing table. For example, in
constraint number 16 a foreign key exists in the Class table that
references a primary key in its parent table, Course.

Figure 4 RI Structure in the Sample Database

Note Figure 4 also serves as a dependency graph. It tells you what
tables must be populated before others when doing the physical
design.

The tables, columns, and keys participating in RI are defined as
follows:

PERSON

STUDENT

FACULTY

TUITION

DEPARTMENT

BILLING ENROLLS

COURSE

CLASS

ROOM

1

2

3

4

5

6

7

8
9

1110

12

13
14

15

16

17

Table 48 Tables and Columns Involved with RI

Constraint Referencing Table Foreign Key Referenced Table Primary Key

1 BILLING Registrar_ID PERSON ID

2 STUDENT ID PERSON ID
383

Sample Database Tables and Referential Integrity
3 FACULTY ID PERSON ID

4 STUDENT Tuition_ID TUITION ID

5 FACULTY Building_Name,
Room_Number

ROOM Building_Name,
Number

6 DEPARTMENT Building_Name,
Room_Number

ROOM Building_Name,
Number

7 CLASS Building_Name,
Room_Number

ROOM Building_Name,
Number

8 FACULTY Dept_Name DEPARTMENT Name

9 DEPARTMENT Head_Of_Dept FACULTY ID

10 STUDENT Major DEPARTMENT Name

11 STUDENT Minor DEPARTMENT Name

12 COURSE Dept_Name DEPARTMENT Name

13 BILLING Student_ID STUDENT ID

14 ENROLLS Student_ID STUDENT ID

15 CLASS Faculty_ID FACULTY ID

16 CLASS Course_Name COURSE Name

17 ENROLLS Class_ID CLASS ID

Table 48 Tables and Columns Involved with RI continued

Constraint Referencing Table Foreign Key Referenced Table Primary Key
384

Table Design of the Demodata Sample Database
Table Design of the Demodata Sample Database
Following is a guide to the tables in the sample university database.
This information is included with each table:

Columns in the table

Data types for each column

Size, or length, of the column in bytes

Keys (blank if the column is not a key)

Indexes (blank if the column does not have an index)

BILLING Table

CLASS Table

COURSE Table

DEPT Table

ENROLLS Table

FACULTY Table

PERSON Table

ROOM Table

STUDENT Table

TUITION Table

BILLING Table

Column Data Type Size Keys

Student_ID UBIGINT 8 PRIMARY, FOREIGN

Transaction_Number USMALLINT 2 PRIMARY

Log TIMESTAMP 8

Amount_Owed DECIMAL 7.2

Amount_Paid DECIMAL 7.2

Registrar_ID UBIGINT 8 FOREIGN

Comments LONGVARCHA
R

65500
385

Sample Database Tables and Referential Integrity
CLASS Table

COURSE Table

DEPT Table

Column Data Type Size Keys

ID IDENTITY 4 PRIMARY

Name CHARACTER 7 FOREIGN

Section CHARACTER 3

Max_Size USMALLINT 2

Start_Date DATE 4

Start_Time TIME 4

Finish_Time TIME 4

Building_Name CHARACTER 25 FOREIGN

Room_Number UINTEGER 4 FOREIGN

Faculty_ID UBIGINT 8 FOREIGN

Column Data Type Size Keys

Name CHARACTER 7 PRIMARY

Description CHARACTER 50

Credit_Hours USMALLINT 2

Dept_Name CHARACTER 20 FOREIGN

Column Data Type Size Keys

Name CHARACTER 20 PRIMARY

Phone_Number DECIMAL 10.0

Building_Name CHARACTER 25 FOREIGN

Room_Number UINTEGER 4 FOREIGN

Head_of_Dept UBIGINT 8 FOREIGN
386

Table Design of the Demodata Sample Database
ENROLLS
Table

FACULTY Table

PERSON Table

Column Data Type Size Keys

Student_ID UBIGINT 8 PRIMARY, FOREIGN

Class_ID INTEGER 4 PRIMARY, FOREIGN

Grade REAL 4

Column Data Type Size Keys

ID UBIGINT 8 PRIMARY, FOREIGN

Dept_Name CHARACTER 20 FOREIGN

Designation CHARACTER 10

Salary CURRENCY 8

Building_Name CHARACTER 25 FOREIGN

Room_Number UINTEGER 4 FOREIGN

Rsch_Grant_Money FLOAT 8

Column Data Type Size Keys

ID UBIGINT 8 PRIMARY

First_Name VARCHAR 15

Last_Name VARCHAR 25

Perm_Street VARCHAR 30

Perm_City VARCHAR 30

Perm_State VARCHAR 2

Perm_Zip VARCHAR 10

Perm_Country VARCHAR 20

Street VARCHAR 30

City VARCHAR 30
387

Sample Database Tables and Referential Integrity
ROOM Table

State VARCHAR 2

Zip VARCHAR 10

Phone DECIMAL 10.0

Emergency_Phone CHARACTER 20

Unlisted BIT 1

Date_Of_Birth DATE 4

Email_Address VARCHAR 30

Sex BIT 1

Citizenship VARCHAR 20

Survey BIT 1

Smoker BIT 1

Married BIT 1

Children BIT 1

Disability BIT 1

Scholarship BIT 1

Comments LONGVARCHAR 65500

Column Data Type Size Keys

Column Data Type Size Keys

Building_Name CHARACTER 25 PRIMARY

Number UINTEGER 4 PRIMARY

Capacity USMALLINT 2

Type CHARACTER 20
388

Table Design of the Demodata Sample Database
STUDENT
Table

TUITION Table

Column Data Type Size Keys

ID UBIGINT 8 PRIMARY,
FOREIGN

Cumulative_GPA DECIMAL 5.3

Tuition_ID INTEGER 4 FOREIGN

Transfer_Credits DECIMAL 4.0

Major CHARACTER 20 FOREIGN

Minor CHARACTER 20 FOREIGN

Scholarship_Money DECIMAL 19.2

Cumulative_Hours SMALLINT 2

Column Data Type Size Keys

ID INTEGER 4 PRIMARY

Degree VARCHAR 4

Residency BIT 1

Cost_Per_Credit REAL 4

Comments LONGVARCHAR 65500
389

Sample Database Tables and Referential Integrity
390

Index
A
Accelerated file open mode 66, 71, 72, 156

transaction durability, lack of 71
Access methods

overview of database 1
Access rights for database 347
Accessing records

by chunks 153
by key value 149
by physical location 148

ACS See Alternate collating sequence

ActiveX interface

overview 6
redistributable files 143
registering files 143

ADD FOREIGN KEY clause 338
ADD keyword, with ALTER TABLE statement 289
ADD PRIMARY KEY clause 337
Adding

keys 171
Aggregate functions 314

See Group aggregate functions

Alias names for tables 260
All

rights 348
Allocation table

variable-tail 120
ALT constant 87
Alter

rights 348
ALTER TABLE statement

defining referential constraints 333
dropping columns with 283
with ADD FOREIGN KEY clause 338
with ADD keyword 289
with ADD PRIMARY KEY clause 337
with DROP FOREIGN KEY clause 339
with DROP keyword 283
with DROP PRIMARY KEY clause 337

Alternate collating sequence

ACS pages 24

case sensitivity 36
international sort rules 50
sorting keys 47
user-defined ACSs 48

Alternate collating sequence. See ACS

AND boolean operator 311
and Btrieve API 242
API programming

creating a file, overview 218
Get operations 237
inserting records 226
Step operations 234
updating records 231
working with segmented indexes 246

Application development

additional resources 13
database connection quick reference 9
development tools 6
for transactional interface 15
getting started 5

Archival logging

and file backups 69
Ascending sort order

in indexes 266
in keys 35

ATOMIC keyword, with compound statement 324
Atomicity 366

transaction processing and 280
Attributes

file 88
index 265
key 86

AVG function 314

B
Backing up files 69
Balanced indexes See Indexes

balancing

BALANCED_KEYS constant 89
Base files 29
BEGIN...END statement 324
391

BETWEEN operator 312
Bias values and locking 184
BIN constant 86
Binary large objects See BLOBs

Binary large objects. See <Para Font> BLOBs

Blank truncation 79, 117
about 117
creating files that use 88

BLANK_TRUNC constant 88
Blanks in file names 30
BLOBs

and Btrieve API 242
and record length 62
code sample using Btrieve API 242
sample structures 245
Visual Basic and Btrieve API 242

Boolean

expressions in triggers 329
operators, in restriction clauses 311

Bound databases 253
BTI_DOS operating system switch 130
BTI_DOS_32B operating system switch 130
BTI_DOS_32P operating system switch 130
BTI_DOS_32R operating system switch 130
BTI_LINUX operating system switch 130
BTI_LINUX_64 operating system switch 130
BTI_WIN_32 operating system switch 130
BTI_WIN_64 operating system switch 130
BTITYPES.H 129, 133
BTRAPI.C 129, 133
BTRAPI.H 129, 133
BTRCALL function

PALN32.DLL 138
BTRCALLID function 174
BTRCONST.H 129, 133
Btrieve API

BTI_DOS operating system switch 130
BTI_DOS_32B operating system switch 130
BTI_DOS_32P operating system switch 130
BTI_DOS_32R operating system switch 130
BTI_LINUX operating system switch 130
BTI_LINUX_64 operating system switch 130
BTI_WIN_32 operating system switch 130
BTI_WIN_64 operating system switch 130
DOS 133
sample code for inserting records 226

using BLOBs 242
using chunks 242
using variable-length records 242

Btrieve API programming

basic operations 214
overview 213

Btrieve interface See Transactional interface

Btrieve operation sequence 146
BTRVID function 174, 175, 202
Byte alignment

Visual Basic and Btrieve API 137

C
C/C++

create a file using Btrieve API 221
inserting records, and Btrieve API 228
perform Get operations using Btrieve API 240
perform step operations using Btrieve API 236
source modules for Btrieve API 129
update records using Btrieve API 233
working with segmented indexes, and Btrieve API

248
Cache 74

and LRU algorithm

CALL (procedure) statement 321
Cartesian product joins 306
Cascaded deletes 343
Case sensitivity

and column names 262
and index column values 266
and table names 257
in keys 36
stored view names and 296

Changing

rows 291
Characters

double-byte 60
Shift-JIS 60

Chunks

accessing 153
and Btrieve API 242
code sample using Btrieve API 242
debugging operations 209
intrarecord currency and 154
sample structures 245
Visual Basic and Btrieve API 242
392

Clauses, restriction 310
Clearing owner names 123
ClientID parameter 202
Clients

handling multiple 173
supporting multiple 173

COBOL

source modules for Btrieve API 131
Code samples

Creating a file, Btrieve API 218
Get operations, Btrieve API 237
inserting records using Btrieve API 226
Step operations, Btrieve API 235
working with segmented indexes, Btrieve API

246
COLLATE.CFG file 50
Collating sequence. See Alternate collating sequence

Collation 369
Collation samples using ISRs 369
Columns

case-sensitivity with names 262
computed 304
creating 262
data types for 262
default values, specifying 290
dropping 283
headings in views 296
naming conventions 256
qualified names of 256
removing 283
selecting 300

COMMIT WORK statement 354
Compound index 162
Compound statements 324
Compression

page 94
Compression buffer size 118
Compression. See Data compression

Computed columns

in joins 304
Concurrency 354

extended operations and 169
Concurrency control 354

data file locks 359
explicit locks 363
methods 174

passive control 364
transaction processing 354

Concurrent transactions 64
using 174
when to use 64

Condition operators 311
Condition, defined 161
Conditional execution of SQL statements 325
Configuration issues 17, 22
Connection

database connection quick reference 9
Connector, defined 161
Correlated subqueries 308
COUNT function 302, 314
CREATE

GROUP statement 350
INDEX statement 263
PROCEDURE statement 321
TRIGGER statement 327
VIEW statement, with SELECT clause 295, 296

Create Index operation 96
Create operation

calling 95
Create table right 347
CREATE TABLE statement

defining referential constraints 333
granting right to use 347
with FOREIGN KEY clause 339
with PRIMARY KEY clause 336

Creating

columns 262
data dictionaries 258
databases 255
indexes 263
stored procedures 321
tables 260
user groups 350
users 350
views 295

Creating files

overview 218
Currency

intrarecord 154
logical 149
physical 148

Cursor stability isolation level 360
393

Cycle

delete-connected 344
Cycle path

defined 335

D
Data

modifying 287
retrieving using functions 314

Data buffer 62
Data compression

about 78
creating files that use 89
using 118

Data dictionaries

contents 258
creating 258
deleting 285
querying 258

Data encryption 124
Data file

creating 85
Data files

as locking units 359
index segments, maximum number of 265

Data integrity 63
Data pages 24
Data security. See Security

Data types 31
and joins 304
for columns 262
in Btrieve data buffers 126

DATA_COMP constant 89
Database

permissions 347
retrieving rows from 294
rights 347
security rights 347

Database access methods 1
Database design 81

conceptual 271
logical 271
physical 275

Database element names

about 256
duplicate 256

maximum lengths for 257
unique 256
valid characters for 256

Database optimization 113
Database URI 54
Databases

adding rows to 279
bound 253
creating 255
defining referential constraints for 341
deleting 285
deleting rows from 281
named 252
normalization of 272
retrieving rows from 314
security 347
transactions in 354
updating 291
using transactions in 280

Data-only files 28
Deadlock condition

avoiding 362
with cursor stability isolation level 363
with exclusive isolation level 363

Deadlock detection 63
Debugging 204
Default column values 290
DEFAULT statement 290
Defining stored procedures 321
Definitions

condition 161
connector 161
descriptor 161
extractor 161
filter 161
key 161
key segment 162

Delete

right 348
Delete rule

about 343
anomalies for foreign keys 343

DELETE statement

deleting rows with 281
invoking triggers with 327

Delete-connected cycle 344
394

Delete-connected table 334
Deleting

columns 283
databases 285
indexes 282
rows 281
savepoints 356
stored procedures 322
tables 284
triggers 327
users and user groups 352

Delphi

add Pervasive PSQL source modules 217
create a file using Btrieve API 219
developing Pervasive PSQL applications 216
insert records using Btrieve API 228
perform Get operations using Btrieve API 239
perform step operations using Btrieve API 235
source modules for Btrieve API 132
update records using Btrieve API 232
working with segmented indexes, and Btrieve API

247
Dependent

rows 334
Dependent tables 334
DESC_KEY constant 87
Descendants 334
Descending sort order

in indexes 266
in keys 35

Descriptor, defined 161
Disabling security 353
Disk usage 77

blank truncation and 117
data compression and 118
page preallocation and 115
page size and 103
reducing 211

DISTINCT

aggregate functions keyword 315
Distributing applications

ActiveX interface 143
distribution rules for Pervasive PSQL engines

143
overview 143
required files 143

Distribution rules for Pervasive PSQL engines 143
DOS

API for Btrieve 133
DOS (Btrieve API) 133
Double-byte character support 60
DROP

DICTIONARY statement 285
PRIMARY KEY clause 337
PROCEDURE statement 322
TRIGGER statement 327

DROP FOREIGN KEY clause 339
DROP INDEX statement 282
DROP TABLE statement 284
Dropping

columns 283
indexes 282
keys 171
tables 284

DUP constant 86
DUP_PTRS constant 89
Duplicatability

in indexes 266
in keys 35

Duplicatable keys 113
Dynamic Data Exchange (DDE) 174
Dynamic file expansion 211

E
Embedded spaces 30
Enabling security 349
Encryption, data 124
Ending transactions 355
English language character sorting 50
Entities

weak entities 382
Equal joins 305
Event logging 70
Exclusive

open mode 124
transactions 64

Exclusive isolation level 359
Exclusive transactions

when to use 64
Explicit locks 183

about 363
defined 358
395

examples 194
in concurrent transactions 186
in non-transactional environment 184
with multiple position blocks 200

Expressions

in scalar functions 316
Extended files and extension files 29
Extended operations 75

heavy concurrency and 169
optimizing 161
performance and 168
reject count and 169
Visual Basic and Btrieve API 242

External index files 21
Extractor, defined 161
EXTTYPE_KEY constant 86

F
FCR See File Control Record

File

create with C/C++ using Btrieve API 221
create with Delphi using Btrieve API 219
creating in Visual Basic using Btrieve API 218

File backups 69
File Control Record

in key-only files 29
in standard data files 28
pages 24

File flags 88
File names 30
File Open mode 66, 71, 72, 156
File size

estimating 108
File specification

sample 91
File types 28
Files

external index 21
pre-image 68
required to redistribute applications 143
sample structures for creating 223
trace 204
transaction log 65

Filter evaluation precedence 162
Filter, defined 161
Filters

optimizing 161
First normal form 273
Fixed-length portions of variable-length records 159
Flags

file 88
key 86

Foreign keys

creating 338
defined 334, 336, 338
deleting 339

Free space

list 77
threshold 89

FREE_10 constant 89
FREE_20 constant 89
FREE_30 constant 89
French language character sorting 50
Functions

aggregate 314
aggregate average (AVG) 314
aggregate COUNT 314
aggregate MAX 314
aggregate MIN 314
aggregate SUM 314
aggregate with DISTINCT keyword 315
arguments for group aggregate 314
scalar 316
scalar LEFT 316
scalar RIGHT 316

G
German language character sorting 50
Get operations 237

retrieving records 150
sample structures 241
with C/C++ using Btrieve API 240
with Delphi using Btrieve API 239
with Visual Basic using Btrieve API 237

GRANT

access rights statement 351
LOGIN statement 350

Group aggregate functions

about 314
arguments for 314

GROUP BY clause, with SELECT statement 302, 315
Grouping rows 302
396

Groups. See User groups

H
HAVING clause, with SELECT statement 315
Headings 296

I
IF statement 325
Implicit locks 358

examples 194
page 190
record 187
with multiple position blocks 200

Implicit lockst 183
IN operator 312
INCLUDE_SYSTEM_DATA constant 89
Index balancing 119
Index balancing configuration option 78, 120
Indexes

ascending sort order 266
attributes 265
balancing 77, 120
case sensitivity with sorts 266
creating 263
creating files that use balanced 89
descending sort order 266
dropping 282
duplicatability in 266
duplicate key values 21
external index files 21
join conditions and 304
maximum number of 264
modifiability 266
named 256
pages 24
partial 266
positioning rules 21
removing 282
segmented 246, 264, 266
transactional interface 21
when to use Create Index 96

Initiation Time Limit configuration option 72, 156
Insert

right 348
rule 342

INSERT statement

invoking triggers with 327
with VALUES clause 279

Inserting

rows 279
Inserting records 226

C/C++ and Btrieve API 228
sample structures 229

Integrity

of updates 280, 354
Interface DLLs for Windows 142
Interface libraries 142
International sort rules 50
Intrarecord currency 154
Invalid Descriptor error

causes of 163
IS NOT NULL operator 312
IS NULL operator 312
Isolation levels

cursor stability 360
cursor stability deadlock condition 363
exclusive 359
exclusive deadlock condition 363
overview 358

ISR. See International sort rules

J
Japanese language character sorting 50
Joins 303

cartesian product 306
computed columns in 304
data types and 304
equal 305
full outer 307
indexes and 304
left 307
nonequal 305
right 307
self 306
specifying 304
using views and tables in 305

K
Key

specification structure 50
Key attributes 32

ACS 47
397

case-sensitivity 36
duplicatability 35, 113
modifiability 35
segmentation 32
sort order 35

Key buffers

segmented keys 33
Key flags 86
Key numbers, assigning 90
Key paths, changing 151
Key segments

defined 162
optimization and 163

Key specifications

sample 91
Key types See also Data types

KEY_ONLY constant 89
Key-only files 29, 122

creating 89
Keys 274, 336

adding and dropping 171
change primary 337
characteristics of primary 336
create primary 336
defined 161
delete foreign 339
delete primary 337
foreign 336, 338
linked-duplicatable vs. repeating-duplicatable

114
naming 256
primary 336
with transactional interface 20

L
Language interface source modules See Source

modules

Language interfaces 125
Large files 29
Least-recently-used algorithm

LEAVE statement 325
LEFT function 316
Legacy null 37
Library

link for transactional interface on Linux 142
Library interface 142

LIKE operator 312
Link library

transactional interface on Linux 142
Linked-duplicatable keys 113

about 113
advantages when using 114

Linux

link library for transactional interface 142
Locking

and bias values 184
Locking units 354
Locks

about 358
bias values for 184
data files and exclusive isolation 359
deadlock condition 362
explicit 183, 363
file 191
implicit 183, 358
implicit page 190
implicit record 187
multiple-record 185
overview 183
record 63
single-record 184
transaction 358

Log keys 66
Logging

events 70
transaction 66
transaction and accelerated file open mode 66
transaction log files and log segments 65

Logical currency 149
Logical record length, calculating 98
Login rights for database 347
Long file names 30
LOOP statement 325
Loops

about 325
and the WHILE statement 326
exiting from 325

LRU algorithm. See Least-recently-used algorithm

M
MANUAL_KEY constant 87
Many-to-many relationship 272
398

Master user 349
MAX function 314
Memory management 74
MicroKernel configuration issues 17, 22
MIN function 314
Minimum page size 106
MOD constant 87
Modifiability

in indexes 266
in keys 35

Modifying

tables 289
Modifying data 287
Multiple

Btrieve clients 173, 179
position blocks 200

Multiple paths

referential integrity anomalies with deletion 345
Multi-record operations 161
Multi-segment key 162

N
Named databases 252
NAMED_ACS constant 87
Naming conventions

columns 256
database elements 256
files 30
group names 256
indexes 256
keys 256
stored procedures 256
tables 256
triggers 256
usernames 256
views 256

Nested queries. See Subqueries

NO_INCLUDE_SYSTEM_DATA constant 89
NOCASE_KEY constant 87
No-currency-change operations 159
Non-duplicatable keys

updating 157
Nonequal joins 305
Non-modifiable keys, updating 159
Normalization of databases 272

first normal form 273

second normal form 273
third normal form 274

NOT BETWEEN operator 312
NOT IN operator 312
NOT LIKE operator 312
No-wait locks 63
NUL constant 87
Nulls

legacy 37
true 37

NUMBERED_ACS constant 87

O
One-to-many relationship 272
One-to-one relationship 272
Open mode 66, 71, 72, 156
Operating system switches

Btrieve API 130
Btrieve DOS 134

Operation Bundle Limit configuration option 72,
156

Operations, multi-record 161
Operations, sequence 146
Operators

BETWEEN 312
boolean AND 311
boolean OR 311
condition range 311
IN 312
IS NOT NULL 312
IS NULL 312
LIKE 312
NOT BETWEEN 312
NOT IN 312
NOT LIKE 312
relational condition 311

Optimizing

database 113
multi-record operations 161

Optimum page size 100
OR boolean operator 311
ORDER BY clause, with SELECT statement 302
Orphan rows 334
Owner names

assigning with Set Owner operation 123
399

P
Page Allocation Table

pages 24
shadow paging and 68

Page compression 94
Page locking 190
Page preallocation 115

about 75
creating files that use 88

Page size 25
choosing 100
maximum index segments and 264
minimum 106
optimum 100

Page types

transactional interface 24
Parent

rows 333
tables 333

Partial Columns

in indexes 266
Pascal

Btrieve API source modules 135
Passive concurrency 179
Passive control 364
Passwords

and case-sensitivity 257
and database security 349
storing 351

PAT See Page Allocation Table

Performance

extended operations and 168
Performance enhancement

extended operations 75
memory management 74
page preallocation 75
system transactions 71

Permanent indexes.

See Linked-duplicatable keys

Pervasive event logging 70
Pervasive PSQL ActiveX interface. See ActiveX

interface

Pervasive PSQL source modules

add to a Delphi project 217
add to a Visual Basic project 217

Physical currency 148

Physical record address 151
Physical record length 98, 102
Position blocks

handling multiple 201
Position blocks, handling multiple 200
Positioning

extended operations and 162
PRE_ALLOC constant 88
Pre-image files 68
PRIMARY KEY clause 336
Primary keys

changing 337
characteristics of 336
creating 336
defined 336
deleting 337

Procedure-owned variables 323
Procedures, stored 320
Processing transactions 280
PUBLIC group 351

Q
Qualified column names 256
Query

querying data dictionaries 258

R
Range operators in restriction clauses 311
Read-only tables in views 297
Record

locking 181
Record length 61

calculating logical 98
calculating physical 101

Record locks 63
about 358
explicit, in non-transactional 184
implicit 187
single 184

Records

accessing 148
chronological ordering 21
code sample for updating multiple records using

Btrieve API 231
example 82
insert with Delphi using Btrieve API 228
400

insert with Visual Basic using Btrieve API 226
inserting 156
retrieving with Get operations 150
retrieving with step operations 148
same code for inserting 226
updating 156
updating records with Visual Basic using Btrieve

API 231
updating with C/C++ using Btrieve API 233
updating with Delphi using Btrieve API 232
variable-length 151
with transactional interface 20

References

cycle path 335
defined 334
paths defined 334
right 348

Referential constraints

create foreign keys with 338
create primary keys with 336
defining 341
delete foreign keys 339
delete primary keys 337
examples of 346
overview 333

Referential integrity

anomalies and delete-connected cycles 344
anomalies and multiple delete-connected paths

345
anomalies and the delete rule for foreign keys 343
definitions 333
delete rule 343
insert rule 342
overview 333
self-referencing tables and 335
update rule 343

Registering ActiveX interface 143
Reject count 169
Relational operators 311
Relationships

many-to-many 272
one-to-many 272
one-to-one 272

RELEASE SAVEPOINT statement 356
REPEAT_DUPS_KEY constant 87
Repeating duplicatable keys

about 114
advantages when using 114

Reserved duplicate pointers 89
Reset operation 210
Restricting file access 123
Restriction clauses

about 310
examples 312
operators 310

Retrieval operations

data with SELECT statements 294
REVOKE

access rights statement 353
LOGIN statement 352

Revoking rights 352
RI. See Referential integrity

RIGHT function 316
Rights

all 348
alter 348
create table 347
delete 348
granting for database 347
insert 348
login to database 347
overview 347
references 348
revoking 353
select 347
update column or table 348

ROLLBACK

with TO SAVEPOINT clause 356
WORK statement 354

Rolling forward 69
Rows

deleting 281
dependent 334
inserting 279
orphan 334
parent 333
sorting and grouping 302
updating 291

S
Sample database

Billing table 385
401

Class table 386
Course table 386
Dept table 386
Enrolls table 387
entities 382
entity relationships 382
Faculty table 387
overview 380
Person table 387
referential integrity 383
Room table 388
structure 381
Student table 389
table design 385
Tuition table 389

Sample structures

inserting records and Btrieve API 229
performing Get operations and Btrieve API 241
performing Step operations and Btrieve API 236
updating records and Btrieve API 234
using chunks,BLOBs,variable-length records and

Btrieve API 245
Sampledatabase

referential integrity 346
SAVEPOINT statement 355
Savepoints

creating 355
deleting 356
overview 355
rolling back to 356

Scalar functions

overview 316
Second normal form 273
Security 123

case-sensitivity with passwords 257
creating user groups and 350
creating users and 350
database passwords 349
disabling 353
enabling 349
groups, naming 256
master user and 349
overview 347
PUBLIC group and 351
rights 347
setting up 348

system tables 353
users, naming 256

SEG constant 87
Segmented indexes 246

C/C++ and Btrieve API 248
Delphi and Btrieve API 247
Visual Basic and Btrieve API 246

Segmented keys 32, 162
setting key buffers 33

Segments

in indexes 266
Select right 347
SELECT statement

as nested query 308
lists, specifying 300
with GROUP BY clause 302, 315
with HAVING clause 315
with ORDER BY clause 302
with WHERE clause 304

Selecting columns 300
Selection lists 300
Self joins 306
Self-referencing tables 335
Sequence of Btrieve operations 146
SET

SQL variable statement 323
SET SECURITY statement

and database security 348
with NULL keyword 353

Setting

security 348
Settings

owner names 123
Setup issues 17, 22
Shadow paging 68
Shift-JIS characters 60
Shutting down the MicroKernel 210
Sort order

ascending and descending keys 35
descending, in indexes 35
indexes 266
keys by ACS 47
rows 302

Source modules

BTRCONST and BTRAPI32 217
Btrieve API 126
402

C/C++ 129
COBOL 131
Delphi 132
DOS API for Btrieve 133
overview 126
Pascal 135
SQLAPI32 217
Visual Basic 137

Spaces in file names 30
Spanish language character sorting 50
SPECIFY_KEY_NUMS constant 90
Specifying

column default values 290
list of columns 300
trigger order 328
triggers 328

SQL control statements

compound statements 324
IF statement 325
LEAVE statement 325
LOOP statement 325
overview 324
WHILE statement 326

SQL variable statements

assigning 323
overview 323
procedure-owned variables 323

Standard data files 28
START TRANSACTION statement 354
Starting

a Pervasive PSQL application 217
transactions 355

Status Code

causes of status code 62 163
Step operations 234

retrieving records 148
sample structures 236
with C/C++ using Btrieve API 236
with Delphi using Btrieve API 235

Stop operations

shutting down the MicroKernel 210
Stored procedures

as triggers 327
creating 321
defining 321
deleting 322

invoking 321
naming 256
overview 320

Stored statements. See Stored procedures

Stored views 295
Storing, passwords 351
Structure

for key specification 50
Structures

create a file using Btrieve API 223
Subqueries

about 308
correlated 308
limitations 308

SUM function 302, 314
Supplemental indexes. SeeRepeating-duplicatable

keys

Supporting multiple Btrieve clients 173
System data 66

creating files that use 89
System tables 258
System transactions

frequency of 73
overview 71

T
Tables

aliases for, assigning 260
case sensitivity with names 257
change primary keys 337
creating 260
define relationships for referential integrity 333
defining views 260
delete-connected 334
deleting 284
dependent 334
dependent descendant 334
dropping 284
join with views 305
joining with other tables 304
many-to-many relationships 272
modifying definitions of 289
naming conventions 256
one-to-many relationships 272
one-to-one relationships 272
parent 333
403

read-only in views 297
relationships 272
self-referencing 335
system 258

Temporary views 295
Third normal form 274
Trace files 204
Trace Operations configuration option 204
Transaction 63

concurrent 64
concurrent versus exclusive 64
exclusive 64
logging 65
overview of 280
processing 280

Transaction durability 65
not available with accelerated mode 71

Transaction locks 358
Transactional interface

configuration issues 17, 22
data pages 24
developing applications for 15
file types 28
fundamentals 19
indexes 21
keys 20
large files 29
Linux link library 142
page size 25
page types 24
records 20
variable pages 24

Transactions

ending 355
locking units in 354
nesting, with savepoints 355
processing 354
rolling back 354
special considerations for 358
starting 355
user 182

Triggers

creating 327
defining trigger action 329
deleting 327
invoking 327

naming 256
overview 327
specifying execution time 328
specifying order of execution 328

True null 37

U
UDT. See User-defined data types

Uniform Resource Indicator See URI

Unique indexes 266
Unused file space 103, 211
Update

rights 348
rule 343

UPDATE statement

invoking triggers with 327
overview 291
with SET clause 296
with WHERE clause 291, 296

Updating records 231
sample structures 234

Updating rows 291
UPPER.ALT file 49
URI 54

special characters 56
User groups

creating 350
deleting 352
granting rights to 352
PUBLIC 351

User-defined ACSs 48
User-defined data types

and Btrieve API 137
Users

creating 350
deleting 352
granting rights to 352

V
Validation

of descriptor 163
VALUES clause, with INSERT statement 279
VAR_RECS constant 88
Variable pages 24
Variable statements. See SQL variable statements

Variable-length records 242
404

blank truncation and 117
code sample using Btrieve API 242
creating files that use 88
inserting and updating 157
reading 151
sample structures 245

Variables

assigning in SQL 323
procedure-owned 323

Variable-tail allocation table 120
Variable-tail Allocation Tables

about 62
creating files that use 90

VATs. See Variable-tail Allocation Tables

VATS_SUPPORT constant 90
Views

column headings in 296
creating 295
features of 295
join with tables 305
mergeable 298
naming 256
stored 295
temporary 295
with read-only tables 297

Visual Basic

add Pervasive PSQL source modules 217
and developing Pervasive PSQL applications 215
byte alignment and Btrieve API 137
create a file using Btrieve API 218
including PALN32.DLL in a project 137
insert records using Btrieve API 226
perform Get operations using Btrieve API 237
source modules for Btrieve API 137
updating records using Btrieve API 231
using chunks,BLOBs,extended operations, and

Btrieve API 242
working with segmented indexes, and Btrieve API

246

W
W3BTRV7.DLL 142
W3BTRV7.LIB 142
W64BTRV.DLL 142
W64BTRV.LIB 142
Wait locks 63

Wasted file space 103, 211
Weak entities 382
WHEN clause, in triggers 329
WHERE clause, with SELECT statement 304
WHILE statement 326
405

406

	Pervasive PSQL Programmer’s Guide
	About This Manual
	Overview of Pervasive Access Methods
	Overview of Pervasive Access Methods
	SQL Access in Pervasive PSQL

	Developer Quick Start
	Choosing An Access Method
	Database Connection Quick Reference
	ADO.NET Connections
	ADO/OLE DB Connections
	JDBC Connections
	Java Class Library
	DSN-Less Connections

	ODBC Information
	Other SQL Access Methods

	Additional Resources for Application Developers
	Conceptual Information
	Reference Information
	Online Developer Resources
	Sample Code

	Developing Applications for the Transactional Interface
	Transactional Interface Environment
	Documentation

	Configuration Issues for Transactional Interface

	Transactional Interface Fundamentals
	Overview of the Transactional Interface
	Transactional Interface Environment

	Pages
	Page Types
	Page Size

	File Types
	Standard Data Files
	Data-Only Files
	Key-Only Files
	Large Files
	Long File Names

	Data Types
	Key Attributes
	Key Attributes Description
	Key Specification

	Database URIs
	Syntax
	Parameter Precedence
	Special Characters
	Remarks
	Examples
	IPv6

	Double-Byte Character Support
	Record Length
	Data Integrity
	Record Locks
	Transactions
	Transaction Durability
	System Data
	Shadow Paging
	Backing Up Your Files

	Event Logging
	Performance Enhancement
	System Transactions
	Memory Management
	Page Preallocation
	Extended Operations

	Disk Usage
	Free Space List
	Index Balancing
	Data Compression
	Blank Truncation

	Designing a Database
	Understanding Data Files
	Creating a Data File
	Data Layout
	Creating File and Key Specification Structures
	Creating a File with Page Level Compression
	Calling the Create Operation
	Create Index Operation

	Calculating the Logical Record Length
	Choosing a Page Size
	Estimating File Size
	Formula and Derivative Steps

	Optimizing Your Database
	Duplicatable Keys
	Page Preallocation
	Blank Truncation
	Record Compression
	Index Balancing
	Variable-tail Allocation Tables
	Key-Only Files

	Setting Up Security
	Owner Names
	Exclusive Mode
	SQL Security

	Language Interfaces Modules
	Interface Modules Overview
	C/C++
	Interface Modules
	Programming Requirements

	COBOL
	Delphi
	DOS (Btrieve)
	Interface Modules

	Pascal
	Visual Basic

	Interface Libraries
	Overview of Interface Libraries
	Linux

	Distributing Pervasive PSQL Applications
	Distribution Rules for Pervasive PSQL
	Registering Pervasive PSQL ActiveX Files
	Installing Pervasive PSQL with your Application

	Working with Records
	Sequence of Operations
	Accessing Records
	Accessing Records by Physical Location
	Accessing Records by Key Value
	Reading Variable- Length Records
	Accessing Records by Chunks

	Inserting and Updating Records
	Ensuring Reliability in Mission-Critical Inserts and Updates
	Inserting Non- Duplicatable Keys
	Inserting and Updating Variable- Length Records
	Reading and Updating Fixed- length Portions
	Updating Non- Modifiable Keys
	No-Currency- Change (NCC) Operations

	Multi-Record Operations
	Terminology
	Background
	Validation
	Optimization
	Performance Tips

	Adding and Dropping Keys

	Supporting Multiple Clients
	Btrieve Clients
	Passive Concurrency
	Record Locking
	User Transactions
	Locks
	Record Locks in Concurrent Transactions
	Implicit Locks
	File Locks

	Examples of Multiple Concurrency Control
	Example 1
	Example 2

	Concurrency Control for Multiple Position Blocks
	Multiple Position Blocks
	ClientID Parameter

	Debugging Your Btrieve Application
	Trace Files
	Indirect Chunk Operations in Client/Server Environments
	Engine Shutdowns and Connection Resets
	Reducing Wasted Space in Files

	Btrieve API Programming
	Fundamentals of Btrieve API Programming
	Btrieve API Flow Chart

	Visual Basic Notes
	Delphi Notes
	Starting a Pervasive PSQL Application
	Adding Pervasive PSQL Source Modules

	Btrieve API Code Samples
	Creating a File
	Inserting Records
	Updating Records
	Performing Step Operations
	Performing Get Operations
	Chunking, BLOBs, and Variable- Length Records
	Working with Segmented Indexes

	Declarations of Btrieve API Functions for Visual Basic

	Creating a Database
	Named Databases
	Bound Databases
	Creating Database Components
	Naming Conventions
	Unique Names
	Valid Characters
	Maximum Name Lengths
	Case Sensitivity

	Creating a Data Dictionary
	Creating Tables
	Aliases

	Creating Columns
	Creating Indexes
	Index Segments
	Index Attributes

	Relational Database Design
	Overview of Database Design
	Stages of Design
	Conceptual Design
	Logical Design
	Physical Design

	Inserting and Deleting Data
	Overview of Inserting and Deleting Data
	Inserting Values
	Transaction Processing
	Deleting Data
	Dropping Indexes
	Dropping Columns
	Dropping Tables
	Dropping an Entire Database

	Modifying Data
	Overview of Modifying Data
	Modifying Tables
	Setting Default Values
	Using UPDATE

	Retrieving Data
	Overview of Retrieving Data
	Views
	Features of Views
	Temporary and Stored Views
	Read-Only Tables in Views
	Mergeable Views

	Selection Lists
	Sorted and Grouped Rows
	Joins
	Joining Tables with Other Tables
	Joining Views with Tables
	Types of Joins

	Subqueries
	Subquery Limitations
	Correlated Subqueries

	Restriction Clauses
	Restriction Clause Operators
	Restriction Clause Examples

	Functions
	Aggregate Functions
	Arguments to Aggregate Functions
	Aggregate Function Rules
	Scalar Functions

	Storing Logic
	Stored Procedures
	Stored Procedure and Positioned Update
	Declaring Stored Procedures
	Invoking Stored Procedures
	Deleting Stored Procedures

	SQL Variable Statements
	Procedure- Owned Variables
	Assignment Statement

	SQL Control Statements
	Compound Statement
	IF Statement
	LEAVE Statement
	LOOP Statement
	WHILE Statement

	SQL Triggers
	Timing and Ordering of Triggers
	Defining the Trigger Action

	Managing Data
	Overview of Managing Data
	Defining Relationships Among Tables
	Referential Integrity Definitions

	Keys
	Primary Keys
	Foreign Keys

	Referential Constraints
	Referential Integrity Rules

	Referential Integrity in the Sample Database
	Creating the Course Table
	Adding a Primary Key to Course
	Creating the Student Table with Referential Constraints

	Administering Database Security
	Understanding Database Rights
	Establishing Database Security
	Enabling Security
	Creating User Groups and Users
	Granting Rights
	Dropping Users and User Groups
	Revoking Rights
	Disabling Security
	Retrieving Information about Database Security

	Concurrency Controls
	Transaction Processing
	Starting and Ending Transactions
	Using Savepoints to Nest Transactions
	Special Considerations
	Isolation Levels
	Explicit Locks
	Passive Control

	Atomicity in Pervasive PSQL Databases
	Transaction Control in Procedures

	Sample Collations Using International Sorting Rules
	German Sample Collations
	Unsorted Data
	Sorted Data

	Spanish Sample Collations
	Unsorted Data
	Sorted Data

	French Sample Collations
	Unsorted Data
	Sorted Data

	Sample Database Tables and Referential Integrity
	Overview of the Demodata Sample Database
	Structure of the Demodata Sample Database
	Assumptions
	Entity Relationships

	Referential Integrity in the Demodata Sample Database
	Table Design of the Demodata Sample Database
	BILLING Table
	CLASS Table
	COURSE Table
	DEPT Table
	ENROLLS Table
	FACULTY Table
	PERSON Table
	ROOM Table
	STUDENT Table
	TUITION Table

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

