
Zen v14

JDBC Driver Guide
Developing Applications Using the Zen JDBC Driver

Copyright © 2019 Actian Corporation. All Rights Reserved.

This Documentation is for the end user’s informational purposes only and may be subject to change or withdrawal by Actian
Corporation (“Actian”) at any time. This Documentation is the proprietary information of Actian and is protected by the
copyright laws of the United States and international treaties. The software is furnished under a license agreement and may be
used or copied only in accordance with the terms of that agreement. No part of this Documentation may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or for any purpose
without the express written permission of Actian. To the extent permitted by applicable law, ACTIAN PROVIDES THIS
DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, AND ACTIAN DISCLAIMS ALL WARRANTIES
AND CONDITIONS, WHETHER EXPRESS OR IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION,
ANY IMPLIED WARRANTY OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OR OF NON-
INFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT WILL ACTIAN BE LIABLE TO THE END USER OR ANY
THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA,
EVEN IF ACTIAN IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Actian Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48
C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor provisions.

Actian, Actian DataCloud, Actian DataConnect, Actian X, Avalanche, Versant, PSQL, Actian Zen, Actian Director, Actian
Vector, DataFlow, Ingres, OpenROAD, and Vectorwise are trademarks or registered trademarks of Actian Corporation and its
subsidiaries. All other trademarks, trade names, service marks, and logos referenced herein belong to their respective
companies.

This product includes software developed by Powerdog Industries. Copyright 1994 Powerdog Industries. All rights reserved.
This product includes software developed by KeyWorks Software. Copyright 2002 KeyWorks Software. All rights reserved.
This product includes software developed by DUNDAS SOFTWARE. Copyright 1997-2000 DUNDAS SOFTWARE LTD.,
all rights reserved. This product includes software developed by the Apache Software Foundation (www.apache.org).

This product uses the free unixODBC Driver Manager as written by Peter Harvey (pharvey@codebydesign.com), modified and
extended by Nick Gorham (nick@easysoft.com), with local modifications from Actian Corporation. Actian Corporation will
donate their code changes to the current maintainer of the unixODBC Driver Manager project, in accordance with the LGPL
license agreement of this project. The unixODBC Driver Manager home page is located at www.unixodbc.org. For further
information on this project, contact its current maintainer: Nick Gorham (nick@easysoft.com).

A copy of the GNU Lesser General Public License (LGPL) is included on the distribution media for this product. You may also
view the LGPL at www.fsf.org/licensing/licenses/lgpl.html.

JDBC Driver Guide
August 2019

v

Contents
About This Document . vii

Who Should Read This Manual . viii
Typographical Conventions . ix

1 Introducing the Zen JDBC Driver . 1
An Overview of Zen support for JDBC Development

Zen JDBC Support . 2
JDBC Requirements . 2
JDBC Features . 2
Zen JDBC Data Types . 2

Zen JDBC Driver Limitations . 4
Unsupported APIs . 4
Driver Limitations . 4

2 Programming with the Zen JDBC 2 Driver . 5
An Overview of the JDBC 2 Functionality in Zen

How to Set Up Your Environment . 6
Setting the CLASSPATH System Variable . 6
Setting the PATH System Variable. . 6
Loading the JDBC Driver into the Java Environment . 6
Specifying a Data Source . 7
Developing JDBC Applets. . 7

JDBC Programming Tasks . 8
Connection String Overview . 8
Connection String Elements . 8
JDBC Connection String Example . 9
Using Character Encoding . 10
Notes on Character Encoding . 10

Developing Web-based Applications . 11
Applets . 11
Servlets and Java Server Pages . 11

JDBC 2.0 Standard Extension API . 13
DataSource . 13

Connection and Concurrency . 16
Scrollable Result Sets . 17
JDBC Programming Sample . 18

3 JDBC API Reference . 19
JDBC API Reference . 20
JDBC Samples . 21

vi

vii

About This Document

This documentation covers development of Zen applications that use the Java API for executing SQL
statements (JDBC).

viii

Who Should Read This Manual

This documentation is designed for the user who is developing Zen applications using the Java API for
executing SQL statements (JDBC).

Actian would appreciate your comments and suggestions. As a user of our documentation, you are in a
unique position to provide ideas that can have a direct impact on future releases. If you have comments
or suggestions, post them at the community forum on the Actian website.

ix

Typographical Conventions

The documentation uses the following typographical conventions.

Convention Explanation

bold Bold typeface usually indicates elements of a graphical user interface, such as menu names,
dialog box names, commands, options, buttons, and so forth. Bold typeface is also applied
occasionally in a standard typographical use for emphasis.

italics Italics indicate a variable that must be replaced with an appropriate value. For example,
user_name would be replaced with an actual user name. Italics is also applied occasionally
in a standard typographical use for emphasis, such as for a book title.

cAsE Uppercase text is used typically to improve readability of code syntax, such as SQL syntax,
or examples of code. Case is significant for some operating systems. For such instances, the
subject content mentions whether literal text must be uppercase or lowercase.

monospace Monospace text is used typically to improve readability of syntax examples and code
examples, to indicate results returned from code execution, or for text displayed on a
command line. The text may appear uppercase or lowercase, depending on context.

', ", and “ ” Straight quotes, both single and double, are used in code and syntax examples to indicate
when a single or double quote is required. Curly double quotes are applied in the standard
typographical use for quotation marks.

| The vertical rule indicates an OR separator to delineate items for which you must choose one
item or another. See explanation for angle brackets below.

[] Square brackets indicate optional items. Code syntax not enclosed by brackets is required
syntax.

< > Angle brackets indicate that you must select one item within the brackets. For example, <yes
| no> means you must specify either “yes” or “no.”

. . . Ellipsis indicates that the preceding item can be repeated any number of times in succession.
For example, [parameter . . .] indicates that parameter can be repeated. Ellipsis following
brackets indicate the entire bracketed content can be repeated.

::= The symbol ::= means one item is defined in terms of another. For example, a::=b means that
item “a” is defined in terms of “b.”

%string% A variable defined by the Windows operating system. String represents the variable text. The
percent signs are literal text.

$string An environment variable defined by the Linux operating system. String represents the variable
text. The dollar sign is literal text.

x

1

c h a p t e r

1Introducing the Zen JDBC
Driver

An Overview of Zen support for JDBC Development

The following topics introduce you to the Zen Java Database Connectivity (JDBC) interface:

 Zen JDBC Support
 JDBC Requirements
 JDBC Features
 Zen JDBC Data Types

 Zen JDBC Driver Limitations
 Unsupported APIs
 Driver Limitations

For instructions and details on this Zen feature, see Programming with the Zen JDBC 2 Driver and
JDBC API Reference.

2

Zen JDBC Support

JDBC is a standard API that Java programmers can use to develop database and Internet applications
using Java. It consists of interfaces to develop SQL based database applications in the Java programming
language. The JDBC interfaces are included as part of the Java Developer Kit.

JDBC is the counterpart of ODBC in Java and is heavily influenced by ODBC and relational databases.

Detailed information on the JDBC API is available at the Oracle website.

JDBC Requirements

The Zen JDBC driver works in conjunction with Zen. You can use the Enterprise Server, Cloud Server,
or Workgroup engines.

JDBC Features

The following is a summary of features of the Zen JDBC driver:

 100% Java certified
 JDBC 4 compliant, type 4 driver that is also compatible with applications that use JDBC 2 drivers
 Supports thread safe operation
 Supports transactions isolation levels supported by the Zen engine, for example

READ_COMMITTED, serializable
 Performs result set caching to reduce network access
 Supports binary data through the longvarbinary data type (2 GB limit)
 Supports long char data through the longvarchar and nlongvarchar data types (2 GB limit)
 Supports stored procedures with parameters
 Encrypts connection strings to provide security
 Support for code page filtering when reading from the database by specified the code page using a

connection string parameter
 Support for result set cursors CONCUR_UPDATABLE, TYPE_SCROLL_INSENSITIVE, and

TYPE_SCROLL_SENSITIVE
 Supports the DataSource interface to register Zen databases in JNDI, shielding your applications

from specific driver features for Zen
 Supports the ParameterMetaData interface

Zen JDBC Data Types

The numerical identifiers used to specify Zen JDBC data types in some cases differ from the JDBC
standard identifiers. The following table gives the full list.

Data Type Identifier

BFLOAT4 7

BFLOAT8 8

BIGIDENTITY -5

3

BIGINT -5

BINARY -2

BIT -7

CHAR 1

CURRENCY 3

DATE 9

DATETIME 11

DECIMAL 3

DOUBLE 8

IDENTITY 4

INTEGER 4

LONGVARBINARY -4

LONGVARCHAR -1

NCHAR -8

NLONGVARCHAR -10

NUMERIC 2

NVARCHAR -9

REAL 7

SMALLIDENTITY 5

SMALLINT 5

TIME 10

TIMESTAMP 11

TINYINT -6

UBIGINT -5

UINTEGER 4

USMALLINT 5

UTINYINT -6

VARCHAR 12

Data Type Identifier

4

Zen JDBC Driver Limitations

Unsupported APIs

The Zen JDBC driver does not support the following JDBC interfaces:

 Array
 Blob
 Clob
 NClob
 Ref
 RowId
 SQLXML
 Struct
 SQLData
 SQLInput
 SQLOutput
 URL

These are not supported due to the fact the Zen engine does not currently support the underlying SQL
3 data types.

Driver Limitations

 You cannot use long data in “out” parameters
 The smallest actual fetch size is two rows
 You cannot have an updateable result set with a join
 You cannot have an updateable result set with a “group by”
 The JDBC driver will not store data in UnicodeBig or UnicodeLittle formats
 The only Holdability is HOLD_CURSORS_OVER_COMMIT
 Pooled statements are not supported
 Named parameters are not supported

5

c h a p t e r

2Programming with the Zen
JDBC 2 Driver

An Overview of the JDBC 2 Functionality in Zen

The following topics cover JDBC 2.0:

 How to Set Up Your Environment
 JDBC Programming Tasks
 Developing Web-based Applications
 JDBC 2.0 Standard Extension API
 Connection and Concurrency
 Scrollable Result Sets
 JDBC Programming Sample

6

How to Set Up Your Environment

This topic contains information about proper configuration for use of the JDBC interface.

 Setting the CLASSPATH System Variable
 Setting the PATH System Variable
 Loading the JDBC Driver into the Java Environment
 Specifying a Data Source
 Developing JDBC Applets

Setting the CLASSPATH System Variable

So that Java applications and applets recognize the Zen JDBC Driver, set your CLASSPATH environment
variable to include the pvjdbc2.jar, pvjdbc2x.jar, and jpscs.jar files. By default, these files are installed on
Windows platforms in the install_directory\bin folder under Program Files. On Linux, macOS, and
Raspbian, the files are installed by default to /usr/local/actianzen/bin/lib.

From Windows

set CLASSPATH=%CLASSPATH%;<path to pvjdbc2.jar directory>/pvjdbc2.jar
set CLASSPATH=%CLASSPATH%;<path to pvjdbc2x.jar directory>/pvjdbc2x.jar
set CLASSPATH=%CLASSPATH%;<path to jpscs.jar directory> /jpscs.jar

From Linux and macOS

export CLASSPATH=$CLASSPATH:<path to pvjdbc2.jar directory>/pvjdbc2.jar
export CLASSPATH=$CLASSPATH:<path to pvjdbc2x.jar directory>/pvjdbc2x.jar
export CLASSPATH=$CLASSPATH:<path to jpscs.jar directory>/jpscs.jar

Setting the PATH System Variable

If you connect to the database engine using shared memory, the JDBC driver must find pvjdbc2.dll.
Ensure that your PATH variable on Windows contains the location of the DLL:
set PATH=%PATH%;<path to pvjdbc2.dll directory>

If you connect to the database engine using sockets, typically no DLL is required.

Loading the JDBC Driver into the Java Environment

After setting the CLASSPATH, you can now reference the Zen JDBC Driver from your Java application.
You do this by using the java.lang.Class class:
Class.forName("com.pervasive.jdbc.v2.Driver");

IPv6 Environments

If you want to use the Zen JDBC driver in an IPv6-only environment, we recommend that you also use
Java JRE 1.7. You may encounter issues with license counts or client-tracking problems if your
application uses Java JRE 1.6 or earlier in an IPv6-only environment.

You may also encounter issues with license counts for the following combination of conditions:

1 A machine runs multiple applications using the Zen JDBC driver and the applications connect to
the database engine with a combination of IPv4 and IPv6 addresses.

7

2 The SYSTEM PATH on the machine does not include the location of pvjdbc2.dll. See also Setting
the PATH System Variable.

Specifying a Data Source

After loading the PervasiveDriver class into your Java environment, you need to pass a URL-style string
to the java.sql.DriverManager class to connect to a Zen database. The syntax for URL for the JDBC
driver is as follows:
jdbc:pervasive://<machinename>:<portnumber>/<datasource>

For example, if your Zen engine is on a machine named DBSERV, and you wish to connect to the
Demodata database, your URL would look like this (assuming the server is configured to use the default
port):
jdbc:pervasive://dbserv/demodata

To connect to the database using the DriverManager class, use the syntax:
Connection conn = DriverManager.getConnection("jdbc:pervasive://dbserv:1583/

demodata", loginString, passwordString);

where loginString is the string for a user login and passwordString is the string for the user password.

Note The Zen engine must be running on the specified host for JDBC applets and applications to
access data.

Developing JDBC Applets

To develop web-based applications using JDBC, you need to place the JDBC .jar file in the code base
directory containing the applet classes.

For example, if you are developing an application called MyFirstJDBCapplet, you need to place the
pvjdbc2.jar file in the directory containing the MyFirstJDBCapplet class. For example, it might be
C:\inetpub\wwwroot\myjdbc\.

This enables the client web browser to download the JDBC driver and connect to the database.

You also need to put the archive parameter within the <applet> tag. For example:
<applet CODE="MyFirstJDBCapplet.class"
 ARCHIVE="pvjdbc2.jar" WIDTH=641 HEIGHT=554>

Note that the Zen engine must be running on the web server that hosts the applet.

<machinename> is the host name or IP address of the machine that runs the database engine.

<portnumber> is the port on which the database engine is listening. By default it is 1583.

<datasource> is the name of the ODBC DSN on the database server that the application intends to use.

8

JDBC Programming Tasks

This section highlights important concepts for JDBC programming.

Connection String Overview

The JDBC driver requires a URL to connect to a database. The URL syntax for the JDBC driver is:

jdbc:pervasive://machinename:port number/datasource[;encoding=;encrypt=;encryption=]

machinename is the host name or ip address of the machine that runs the Zen server.

port number is the port on which the Zen server is listening. By default it is 1583.

datasource is the name of the ODBC engine data source on the Zen server that the application
intends to use.

encoding= is the character encoding, which allows you to filter data you read through a specified
code page so that it is formatted and sorted correctly. The value “auto” will determine the database
code page at connection time and then set the encoding to that character encoding. The value “auto”
will also preserve NCHAR literals in SQL queries. If not “auto”, SQL queries are converted to the
database code page.

encrypt= specifies whether the JDBC driver should use encrypted network communications, also
known as wire encryption.

encryption= specifies the minimum level of encryption allowed by the JDBC driver.

Note A Zen engine needs to be running on the specified host to run JDBC applications.

Connection String Elements

The following shows how to connect to a Zen database using JDBC:

Driver Classpath

com.pervasive.jdbc.v2

Statement to Load Driver

Class.forName("com.pervasive.jdbc.v2.Driver");

URL

jdbc:pervasive://server:port/DSN[;encoding=;encrypt=;encryption=]

or
jdbc:pervasive://server:port/DSN[?pvtranslate=&encrypt=&encryption=]

9

JDBC Connection String Example

The following code shows how to connect to a Zen database using the JDBC driver:
// Load the JDBC driver
Class.forName("com.pervasive.jdbc.v2.Driver")

// JDBC URL Syntax:
// jdbc:pervasive://<hostname or ip address > :
// <port num (1583 by default)>/<odbc engine DSN>

String myURL = "jdbc:pervasive://127.0.0.1:1583/demodata";
 try
 {

// m_Connection = DriverManager.getConnection(myURL,username, password);
}
 catch(SQLException e)

{
e.printStackTrace();

// other exception handling
}

Table 1 Connection String Elements

Argument Description

server The server name using an ID or a URL.

port The default port for the Relational Engine is 1583. If no port is specified, the default is used.

DSN Name of the DSN to set up on the server using regular ODBC methods.

encoding See Using Character Encoding

encrypt Determines whether the JDBC driver should use encrypted network communications, also known as wire
encryption. (See Wire Encryption in Advanced Operations Guide.)

Values: always, never

If this option is not specified, the driver reflects the server’s setting, the equivalent of the value “if needed.”

If the value always is specified, the JDBC driver uses encryption or else return an error if wire encryption is
not allowed by the server. If the value never is specified, the JDBC driver does not use encryption and returns
an error if wire encryption is required by the server.

To use wire encryption with the JDBC driver, another JAR file is required to be in your classpath. This JAR,
jpscs.jar, is installed by default and uses Java Cryptography Extensions (JCE).

encryption Determines the minimum level of encryption allowed by the JDBC driver.

Values: low, medium, high

Default: medium

These values correspond to 40-bit, 56-bit, and 128-bit encryption, respectively.

The following example specifies that the JDBC driver uses UTF-8 encoding, always requires encryption and
requires at least the low level of encryption or it returns an error code.

jdbc:pervasive://host/demodata?encoding=UTF-8&encrypt=
always&encryption=low

10

Using Character Encoding

Java uses wide characters for strings. If the encoding in the database is not also wide character (e.g., UCS-
2), the driver has to know the database code page in order to correctly exchange character data with the
database engine. The database character data encoding is specified using the “encoding” attribute in the
connection string passed to the driver manager.

Encoding Attribute

The encoding attribute specifies a particular code page to use for translating character data. This can be
automated by setting the encoding attribute to “auto”. This directs the driver to automatically use the
code page used in the database. You can also specify a specific code page. If the encoding attribute is
absent, the default operating system code page for the client machine is used. The assumption is that the
client and server use the same operating system encoding.

Setting the encoding attribute to “auto” also results in SQL query text being sent to the engine using
UTF-8 encoding instead of using the database code page encoding. This will preserve NCHAR string
literals in query text.

Example of Using Character Encoding

public static void main(String[] args)
{

//specify latin 2 encoding
String url = "jdbc:pervasive://MYSERVR:1583/SWEDISH_DB;encoding=cp850";
try{

Class.forName("com.pervasive.jdbc.v2.Driver");
Connection conn = DriverManager.getConnection(url);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from SwedishTable");
rs.close();
stmt.close();
conn.close();

}
catch(Exception e)
{

e.printStackTrace();
}

}

Notes on Character Encoding

The Zen JDBC driver uses Java native support for code pages. The list of supported code pages can be
obtained from the Oracle Corporation website.

11

Developing Web-based Applications

This section describes how to create web-based applications with the Zen JDBC driver.

Applets

To develop web based applications using JDBC, you need to place the JDBC jar file in the codebase
directory containing the applet classes.

For example, if you are developing an application called MyFirstJDBCapplet, you need to place the
pvjdbc2.jar file (or the Zen jdbc package) in the directory containing the MyFirstJDBCapplet class.
For example, it might be C:\inetpub\wwwroot\myjdbc\. This enables the client web browser to be able
to download the JDBC driver over the network and connect to the database.

Also, if you use the JAR file, you need to put the archive parameter within the <APPLET> tag. For
example,
<applet CODE="MyFirstJDBCapplet.class" ARCHIVE="pvjdbc2.jar" WIDTH=641 HEIGHT=554>

Note The Zen engine must be running on the web server that hosts the applet.

Servlets and Java Server Pages

JSP can be used to create web-based applications with the Zen JDBC driver.

The following is a sample Java server page for displaying one table in the Demodata sample database
included with Zen:
<%@ page import="java.sql.*" %>
<%@ page import="java.util.*" %>

 <%
 Class.forName("com.pervasive.jdbc.v2.Driver");
 Connection con = DriverManager.getConnection("jdbc:pervasive://localhost:1583/

demodata");
 PreparedStatement stmt = con.prepareStatement("SELECT * FROM Course ORDER BY Name");
 ResultSet rs = stmt.executeQuery();
 %>

 <html>
 <head>
 <title>JSP Sample</title>
 </head>
 <body>

<h1>JSP Sample</h1>
<h2>Course table in Demodata database</h2>
<p>
This example opens the Course table from the Demodata
database and displays the contents of the table.
</p>

 <table border=1 cellpadding=5>
 <tr>
 <th>Name</th>

12

 <th>Description</th>
 <th>Credit Hours</th>
 <th>Department Name</th>
 </tr>

 <% while(rs.next()) { %>
 <tr>
 <td><%= rs.getString("Name") %></td>
 <td><%= rs.getString("Description") %></td>
 <td><%= rs.getString("Credit_Hours") %></td>
 <td><%= rs.getString("Dept_Name") %></td>
 </tr>
 <% } %>

</table>

</body>
</html>

Information on Servlets and JSP

For more information about servlets and JSP, see the Oracle website.

13

JDBC 2.0 Standard Extension API

Because connection strings are vendor-specific, Java specifies a DataSource interface. It takes advantage
of JNDI, which functions as a Java registry. The DataSource interface allows JDBC developers to create
named databases. As a developer, you register the database in JNDI along with the vendor-specific driver
information. Then, your JDBC applications can be completely database agnostic and be "pure” JDBC.

The Zen JDBC driver supports the JDBC 2.0 Standard Extension API. Currently, the Zen JDBC driver
supports the following interfaces:

 javax.sql.ConnectionEvent
 javax.sql.ConnectionEventListener
 javax.sql.ConnectionPoolDataSource
 javax.sql.DataSource
 javax.sql.PooledConnection

Note These interfaces are packaged separately in pvjdbc2x.jar in order to keep the core JDBC API
100% Java.

Although at this time Zen does not provide implementation of RowSet interfaces, Zen JDBC driver has
been tested with Oracle’s implementation of RowSet interface.

DataSource

Java provides a way for application developers to write applications that are driver independent. By using
the DataSource interface and JNDI, applications can access data using standard methods and eliminate
driver specific elements such as connection strings. In order to use DataSource interface, a database has
to be registered with a JNDI service provider. An application can then access it by name.

The following is an example of using the DataSource interface:
// this code will have to be executed by the
// administrator in order to register the
// DataSource.
// This sample uses Oaracle’s reference JNDI
// implementation

public void registerDataSources()
 {
// this example uses the JNDI file system
// object as its registry

 Context ctx;
 jndiDir = "c:\\jndi";

 try
 {
 Hashtable env = new Hashtable (5);
 env.put (Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");

 env.put(Context.PROVIDER_URL, jndiDir);
 ctx = new InitialContext(env);

14

 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 }

 //register demodata as regular data source
 com.pervasive.jdbc.v2.DataSource ds = new com.pervasive.jdbc.v2.DataSource();
 String dsName = "";

 try
 {
 // Set the user name, password, driver type and network protocol
 ds.setUser("administrator");
 ds.setPassword("admin");
 ds.setPortNumber("1583");
 ds.setDatabaseName("DEMODATA");
 ds.setServerName("127.0.0.1");
 ds.setDataSourceName("DEMODATA_DATA_SOURCE");

ds.setEncoding("cp850");
 dsName = "jdbc/demodata";

// Bind it
 try
 {
 ctx.bind(dsName,ds);

 System.out.println("Bound data source [" + dsName + "]");
 }
 catch (NameAlreadyBoundException ne)
 {
 System.out.println("Data source [" + dsName + "] already bound");
 }
 catch (Throwable e)

 {
System.out.println("Error in JNDI binding occurred:");
throw new Exception(e.toString());

 }
 }

 }
}

//in order to use this DataSource in application the following code needs to be
executed

public DataSource lookupDataSource(String ln) throws SQLException
 {
 Object ods = null;

Context ctx;

 try
 {
 Hashtable env = new Hashtable (5);
 env.put (Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");

// this will create the jndi directory
// and return its name
// if the directory does not already exist

15

String jndiDir = "c:\\jndi";

 env.put(Context.PROVIDER_URL, jndiDir);
 ctx = new InitialContext(env);
 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 }
 try
 {
 ods = ctx.lookup(ln);
 if (ods != null)
 System.out.println("Found data source [" + ln + "]");
 else
 System.out.println("Could not find data source [" + ln + "]");
 }
 catch (Exception e)
 {
 throw new SQLException(e.toString());
 }

 return (DataSource)ods;
 }

// note that ConnectionPoolDataSource is
// handled similarly.

16

Connection and Concurrency

A single Zen JDBC connection can easily serve multiple threads. However, while the Connection may
be thread-safe, the objects created by the Connection are not. For example, a user can create four threads.
Each of these threads could be given their own Statement object (all created by the same Connection
object). All four threads could be sending or requesting data over the same connection at the same time.
This works because all four Statement objects have a reference to the same Connection object and their
reading and writing is synchronized on this object. However, thread #1 cannot access the Statement
object in thread #2 without this access being synchronized. The above is true for all other objects in the
JDBC API.

17

Scrollable Result Sets

Scrollable result sets allow you to move forward and backward through a result set. This type of
movement is classified as either relative or absolute. You can position absolutely on any scrollable result
set by calling the methods first(), last(), beforeFirst(), afterLast(), and absolute(). Relative
positioning is done with the methods next(), previous(), and relative().

A scrollable result set can also either be updateable or read-only. This refers to whether or not you are
able to make changes to the underlying database. Another term, sensitivity, refers to whether these
changes are reflected in your current result set.

A sensitive result set will reflect any insert, updates, or deletes made to it. In the case of Zen, an
insensitive result set does not reflect any changes made, since it is a static snapshot of the data. In other
words, you do not see your updates or those made by anyone else.

Sensitive and insensitive result sets correspond to dynamic and static in ODBC, respectively. A sensitive
result set reflects your own changes and can reflect others changes if the transaction isolation level is set
to READ_COMMITTED. Transaction isolation is set using the Connection object. The result set type is set
upon statement creation.

If your result set is insensitive, then it is possible to make calls to the method getRow() in order to
determine your current row number. On an insensitive result set, you can also make calls to isLast(),
isFirst(), isBeforeFirst(), and isAfterLast(). On a sensitive result set, you can only make calls
to isBeforeFirst() and isAfterLast(). Also, on an insensitive result set, the driver will honor the
fetch direction suggested by the user. The driver ignores the suggested fetch direction on sensitive result
sets.

18

JDBC Programming Sample

The following example creates a connection to the database named “DB” on server “MYSERVER.” It
then creates a statement object on that connection that is sensitive and updateable. Using the statement
object a “SELECT” query is performed. Once the result set object is obtained a call to “absolute” is made
in order to move to the fifth row. Once on the fifth row the second column is updated with an integer
value of 101. Then a call to “updateRow” is made to actually make the update.
Class.forName("com.pervasive.jdbc.v2.Driver");
Connection conn=
DriverManager.getConnection("jdbc:pervasive://MYSERVER:1583/DB");

Statement stmt =
conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

ResultSet rs =
m_stmt.executeQuery("SELECT * FROM mytable");

rs.absolute(5);
rs.updateInt(2, 101);
rs.updateRow();

rs.close();
stmt.close();
conn.close();

19

c h a p t e r

3JDBC API Reference

The JDBC API is a standard interface to databases using the Java programming language. The following
topics discuss this interface:

 JDBC API Reference
 JDBC Samples

20

JDBC API Reference

JDBC is a standard API that is documented on the Oracle website. See the JDBC and the JDBC
documentation content, noting the API limitations of the driver in Zen JDBC Driver Limitations.

Other useful sites for JDBC programming include Tomcat information at jakarta.apache.org and Apache
information at www.apache.org.

For conceptual information on programming with the JDBC driver, see the following topics:

 Introducing the Zen JDBC Driver
 Programming with the Zen JDBC 2 Driver

21

JDBC Samples

The Zen SDK includes JDBC samples in the samples directory under your Zen SDK installation
directory. If you installed to the default location, it is file_path\Zen\sdk\samples\jdbc.

For default locations of Zen files, see Where are the files installed? in Getting Started with Zen.

22

	JDBC Driver Guide
	About This Document
	Who Should Read This Manual
	Typographical Conventions

	Introducing the Zen JDBC Driver
	Zen JDBC Support
	JDBC Requirements
	JDBC Features
	Zen JDBC Data Types

	Zen JDBC Driver Limitations
	Unsupported APIs
	Driver Limitations

	Programming with the Zen JDBC 2 Driver
	How to Set Up Your Environment
	Setting the CLASSPATH System Variable
	From Windows
	From Linux and macOS

	Setting the PATH System Variable
	Loading the JDBC Driver into the Java Environment
	IPv6 Environments

	Specifying a Data Source
	Developing JDBC Applets

	JDBC Programming Tasks
	Connection String Overview
	Connection String Elements
	Driver Classpath
	Statement to Load Driver
	URL

	JDBC Connection String Example
	Using Character Encoding
	Encoding Attribute
	Example of Using Character Encoding

	Notes on Character Encoding

	Developing Web-based Applications
	Applets
	Servlets and Java Server Pages
	Information on Servlets and JSP

	JDBC 2.0 Standard Extension API
	DataSource

	Connection and Concurrency
	Scrollable Result Sets
	JDBC Programming Sample

	JDBC API Reference
	JDBC API Reference
	JDBC Samples

